854 resultados para methicillin-resistant staphylococcus aureus
Resumo:
Homoserine dehydrogenase (HSD) is an oxidoreductase in the aspartic acid pathway. This enzyme coordinates a critical branch point of the metabolic pathway that leads to the synthesis of bacterial cell-wall components such as L-lysine and m-DAP in addition to other amino acids such as L-threonine, L-methionine and L-isoleucine. Here, a structural rationale for the hydride-transfer step in the reaction mechanism of HSD is reported. The structure of Staphylococcus aureus HSD was determined at different pH conditions to understand the basis for the enhanced enzymatic activity at basic pH. An analysis of the crystal structure revealed that Lys105, which is located at the interface of the catalytic and cofactor-binding sites, could mediate the hydride-transfer step of the reaction mechanism. The role of Lys105 was subsequently confirmed by mutational analysis. Put together, these studies reveal the role of conserved water molecules and a lysine residue in hydride transfer between the substrate and the cofactor.
Resumo:
We present a nanostructured ``super surface'' fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 mm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0 degrees and contact angle hysteresis of 8.3 degrees. Bacterial studies revealed the bactericidal property of the surface against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing selfcleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.
Resumo:
The present study examines the efficacy of a high strength pulsed magnetic field (PMF) towards bacterial inactivation in vitro, without compromising eukaryotic cell viability. The differential response of prokaryotes Staphylococcus aureus (MESA), Staphylococcus epidermidis, and Escherichia coli], and eukaryotes C2C12 mouse myoblasts and human mesenchymal stem cells, hMSCs] upon exposure to varying PMF stimuli (1-4 T, 30 pulses, 40 ms pulse duration) is investigated. Among the prokaryotes, similar to 60% and similar to 70% reduction was recorded in the survival of staphylococcal species and E. coli, respectively at 4 T PMF as evaluated by colony forming unit (CPU) analysis and flow cytometry. A 2-5 fold increase in intracellular ROS (reactive oxygen species) levels suggests oxidative stress as the key mediator in PMF induced bacterial death/injury. The 4 T PMF treated staphylococci also exhibited longer doubling times. Both TEM and fluorescence microscopy revealed compromised membranes of PMF exposed bacteria. Under similar PMF exposure conditions, no immediate cytotoxicity was recorded in C2C12 mouse myoblasts and hMSCs, which can be attributed to the robust resistance towards oxidative stress. The ion interference of iron containing bacterial proteins is invoked to analytically explain the PMF induced ROS accumulation in prokaryotes. Overall, this study establishes the potential of PMF as a bactericidal method without affecting eukaryotic viability. This non-invasive stimulation protocol coupled with antimicrobial agents can be integrated as a potential methodology for the localized treatment of prosthetic infections. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of alpha-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of alpha-toxin, and triggered limited tissue damage. alpha-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure alpha-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of alpha-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of alpha-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against alpha-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of alpha-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia.
Resumo:
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the beta H-beta I loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-a-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Resumo:
The capsid protein (CP) of Sesbania mosaic virus (SeMV, a T=3 plant virus) consists of a disordered N-terminal R-domain and an ordered S-domain. Removal of the R-domain results in the formation of T=1 particles. In the current study, the R-domain was replaced with unrelated polypeptides of similar lengths: the B-domain of Staphylococcus aureus SpA, and SeMV encoded polypeptides P8 and P10. The chimeric proteins contained T=3 or larger virus-like particles (VLPs) and could not be crystallized. The presence of metal ions during purification resulted in a large number of heterogeneous nucleoprotein complexes. N Delta 65-B (R domain replaced with B domain) could also be purified in a dimeric form. Its crystal structure revealed T=1 particles devoid of metal ions and the B-domain was disordered. However, the B-domain was functional in N Delta 65-B VLPs, suggesting possible biotechnological applications. These studies illustrate the importance of N-terminal residues, metal ions and robustness of the assembly process. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Polyolefinic membranes have attracted a great deal of interest owing to their ease of processing and chemical inertness. In this study, porous polyolefin membranes were derived by selectively etching PEO from PE/PEO (polyethylene/poly(ethylene oxide)) blends. The hydrophobic polyolefin (low density polyethylene) was treated with UV-ozone followed by dip coating in chitosan acetate solution to obtain a hydrophilic-antibacterial surface. The chitosan immobilized PE membranes were further characterized by Fourier transform infrared spectroscope (FTIR) and X-ray photoelectron spectroscope (XPS). It was found that surface grafting of chitosan onto PE membranes enhanced the surface roughness and the concentration of nitrogen (or amine) scaled with increasing concentration of chitosan (0.25 to 2% wt/vol), as inferred from Kjeldahl nitrogen analysis. The pure water flux was almost similar for chitosan immobilized PE membranes as compared to membranes without chitosan. The bacterial population, substantially reduced for membranes with higher concentration of chitosan. For instance, 90 and 94% reduction in Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) colony forming unit respectively was observed with 2% wt/vol of chitosan. This study opens new avenues in designing polyolefinic based antibacterial membranes for water purification.
Resumo:
All major geochemical cycles on the Earth’s surface are mediated by microorganisms. Our understanding of how these microbes have interacted with their environments (and vice versa) throughout Earth's history, and how they will respond to changes in the future, is primarily based on studying their activity in different environments today. The overarching questions that motivate the research presented in the two parts of this thesis -- how do microorganisms shape their environment (and vice versa)? and how can we best study microbial activity in situ? -- have arisen from the ultimate goal of being able to predict microbial activity in response to changes within their environments both past and future.
Part one focuses on work related to microbial processes in iron-rich Lake Matano and, more broadly, microbial interactions with the biogeochemical cycling of iron. Primarily, we find that the chelation of ferrous iron by organic ligands can affect the role of iron in anoxic environmental systems, enabling photomixotrophic growth of anoxygenic microorganisms with ferrous iron, as well as catalyzing the oxidation of ferrous iron by denitrification intermediates. These results imply that the ability to grow photomixotrophically on ferrous iron might be more widespread than previously assumed, and that the co-occurrence of chemical and biological processes involved in the coupled biogeochemical cycling of iron and nitrogen likely dominate organic-rich environmental systems.
Part two switches focus to in situ measurements of growth activity and comprises work related to microbial processes in the Cystic Fibrosis lung, and more broadly, the physiology of slow growth. We introduce stable isotope labeling of microbial membrane fatty acids and whole cells with heavy water as a new technique to measure microbial activity in a wide range of environments, demonstrate its application in continuous culture in the laboratory at the population and single cell level, and apply the tool to measure the in situ activity of the opportunistic pathogen Staphylococcus aureus within the environment of expectorated mucus from cystic fibrosis patients. We find that the average in situ growth rates of S. aureus fall into a range of generation times between ~12 hours and ~4 days, with substantial heterogeneity at the single-cell level. These data illustrate the use of heavy water as a universal environmental tracer for microbial activity, and highlight the crucial importance of studying the physiology of slow growth in representative laboratory systems in order to understand the role of these microorganisms in their native environments.
Resumo:
Neste trabalho foi testada a eficiência antimicrobiana de um nanocompósito de prata preparado a partir da modificação da resina comercial Lewatit VPOC1800 (contendo grupos sulfônicos) para três espécies de bactérias (Staphylococcus aureus, Pseudomonas aeruginosa e Escherichia coli.) cuja estrutura e composição das camadas externas da parede celular são distintas. Em termos da susceptibilidade aos biocidas essa diferença pode significar um fator importante de estudo. A avaliação da atividade biocida foi feita através de experimento que estimou a zona de inibição proporcionada pela atividade da resina sobre as bactérias estudadas. A resina mostrou eficiência biocida que aparentemente não é afetada pelas diferenças morfológicas das bactérias estudadas. Uma série de teste em batelada foi realizado com o intuito de se verificar a massa da resina e o tempo de contato ideal com a solução a ser descontaminada, chegando aos valores de 0,2g e 1minuto. As diferentes concentrações bacterianas utilizadas no estudo não influenciaram na atividade antimicrobiana da resina. Um estudo em coluna foi realizado para se averiguar o ponto de saturação do compósito, observando-se que a curva de ruptura da resina segue um tendência exponencial crescente igual a todas as espécies estudas, atingindo a saturação em aproximadamente 2250 mL
Resumo:
The incidence of various human pathogenic bacteria in commercially available and home-made shrimp feeds used on some farms in India was analyzed. The Total Heterotrophic Bacteria in the commercial feed samples ranged between 103–105 cfu g-1 and those in the farm-made feeds between 106-107 cfu g-1. No bacteria of significance to human health were found to be associated with any of the commercial feed samples analyzed, while farm-made feeds analyzed during the study showed a high incidence of various human pathogens such as Vibrio parahaemolyticus, V. cholerae, Escherichia coli and Staphylococcus aureus. Possible modes of contamination in feeds and ways to prevent them are discussed.
Resumo:
A mortalidade na Fibrose Cística (FC) é decorrente de infecções pulmonares causadas comumente por: Pseudomonas aeruginosa, Staphylococcus aureus e espécies do Complexo Burkholderia cepacia (CBc). Mais recentemente, tem sido observada a emergência de BGN-NF raros, como Achromobacter xylosoxidans, porém, sua prevalência, potencial de transmissão e significado clínico são desconhecidos. O objetivo deste trabalho foi verificar a ocorrência de colonização crônica por A. xylosoxidans e avaliar a possibilidade de transmissão cruzada entre os pacientes acompanhados em dois centros de referência na cidade do Rio de Janeiro. Foram incluídos 39 pacientes com FC, com pelo menos uma cultura positiva para o gênero Achromobacter spp., em um total de 897 analisadas, do período de janeiro de 2003 a dezembro de 2008. A frequência de isolamento de Achromobacter spp. nas culturas analisadas foi de 14,5% (130 em 897 culturas). A maioria (n=122; 93,8%) foi identificada como A. xylosoxidans por testes fenotípicos e pelo sequenciamento do gene rrs que codifica o 16S rRNA. A análise do polimorfismo genético dos isolados de A. xylosoxidans pela técnica de PFGE, mostrou 22 grupos clonais. Destes, sete foram compartilhados entre pacientes distintos sugerindo transmissão cruzada. Apenas o clone G foi amplamente disseminado entre 56,4% dos pacientes estudados, sugerindo a possibilidade de um surto. Os 15 clones restantes constituíram-se em clones exclusivos por pacientes. Os cinco pacientes colonizados cronicamente por A. xylosoxidans mostraram a prevalência de clones únicos. Até o momento, este é o primeiro caso da ocorrência de surto por A. xylosoxidans em pacientes com Fibrose Cística. A. xylosoxidans é um microrganismo que vem se destacando em frequência e como um possível patógeno pulmonar nesses pacientes. Entretanto, até o momento os dados são insuficientes para avaliar a sua contribuição para a evolução da doença pulmonar. Estudos que busquem elucidar as características de A. xylosoxidans que o permitem colonizar persistentemente o pulmão dos pacientes com FC, bem como seu potencial de virulência, são necessários.
Resumo:
Using Staphylococcus aureus as the test culture it has been shown that cell injury occurs in two phases during freezing and storage at temperatures below freezing. Certain constituents of fish muscle appear to protect the cells during both phases of injury. The survival of bacteria on fish muscle is not influenced by the rate at which the fish muscle was frozen prior to inoculation. There was no significant difference between growth of bacteria on quick frozen and slow frozen fish muscle after thawing. However there appeared to be a slight tendency for the lag phase of growth to be extended on thawed quick frozen fish muscle when compared with thawed slow frozen muscle.
Resumo:
Of 262 personnel tested, 137 (52%) were found to be positive for Staphylococcus aureus. Among individual companies the prevalence of S. aureus ranged from 92% (Company No. 1) to 22% (Company No. 2). Although five companies provided a sanitiser hand-dip, this was found to be ineffective for the control of S. aureus. Provision of hand-washing facilities, of protective clothing and of toilet facilities was found to be inadequate for an export food industry.
Resumo:
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Sichuan region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the rufous-spotted torrent frog, Amolops loloensis. Members of the new peptide family named amolopins are composed of 18 amino acids with a unique sequence, for example, NILSSIVNGINRALSFFG. By BLAST search, amolopins did no show similarity to any known peptides. Among the tested microorganisms, native and synthetic peptides only showed antimicrobial activities against Staphylococcus aureus ATCC2592 and Bacillus pumilus, no effects on other microorganisms. The CD spectroscopy showed that it adopted a structure of random combined with beta-sheet in water, Tris-HCl or Tris-HCl-SDS. Several cDNAs encoding amolopins were cloned from the skin cDNA library of A. loloensis. The precursors of amolopin are composed of 62 amino acid residues including predicted signal peptides, acidic propieces, and mature antimicrobial peptides. The preproregion of amolopin precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature amolopins are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Antagonistic activity of lactic acid bacteria (LAB) namely Streptococcus faecalis, Pediococcus cerevisiae and Lactobacillus casei was tested against seafood-borne bacteria such as Staphylococcus aureus, Bacillus cereus, Escherichia coli, Clostridium perfringens and Listeria monocytogenes. Three lactic acid bacteria such as Streptococcus faecalis, Lactobacillus casei and Pediococcus cerevisiae were coated on cooked mackerel meat, individually and in combination against fish-borne bacteria. S. faecalis inhibited C. perfringens in individual coat by 3.7 log units as compared to control, whereas L. casei did not inhibit C. perfringens. P. cerevisiae inhibited S. aureus by 5 log units. L. casei, inhibited L. monocytogenes by 3.3 log units on the third day of storage as compared to control. On the other hand, S. aureus and B. cereus were inhibited on the third and second day by 4.9 log and 5.2 log units respectively. B. cereus, S. aureus, L. monocytogenes were the most sensitive to all three LAB. C. perfringens was the least inhibited among all the seafood-borne bacteria tried. Multiple LAB or LAB strains in combination showed much earlier inhibitory activity on seafood-borne bacteria than single LAB coat.