918 resultados para mathematical model,
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lethargic crab disease (LCD) is an emergent infirmity that has decimated native populations of the mangrove land crab (Ucides cordatus, Decapoda: Ocypodidae) along the Brazilian coast. Several potential etiological agents have been linked with LCD, but only in 2005 was it proved that it is caused by an ascomycete fungus. This is the first attempt to develop a mathematical model to describe the epidemiological dynamics of LCD. The model presents four possible scenarios, namely, the trivial equilibrium, the disease-free equilibrium, endemic equilibrium, and limit cycles arising from a Hopf bifurcation. The threshold values depend on the basic reproductive number of crabs and fungi, and on the infection rate. These scenarios depend on both the biological assumptions and the temporal evolution of the disease. Numerical simulations corroborate the analytical results and illustrate the different temporal dynamics of the crab and fungus populations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper is a study on the population dynamics of blowflies employing a density-dependent. non-linear mathematical model and a coupled population formalism. In this Study, we investigated the coupled population dynamics applying fuzzy subsets to model the Population trajectory. analyzing demographic parameters such as fecundity, Survival, and migration. The main results suggest different possibilities in terms of dynamic behavior produced by migration in coupled Populations between distinct environments and the rescue effect generated by the connection between populations. It was possible to conclude that environmental heterogeneity can play an important role in blowfly metapopulation systems. The implications of these results for population dynamics of blowflies are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this study we analysed the theoretical population dynamics of C. megacephala, an exotic blowfly, kept at 25 and 30degreesC, using a density-dependent mathematical model, with parametric estimates of survival and fecundity in the laboratory. No change in terms of oscillation patterns was found for the two temperatures. The populations exhibited a two-point limit cycle, i.e. oscillations between two fixed points, at 25 and 30degreesC. However a quantitative change was observed, indicating that at 25degreesC the number of immatures in equilibrium is 1176 and at 30degreesC, 1944. The implications of this difference in terms of equilibrium for population dynamics of C. megacephala are discussed.
Resumo:
Neste trabalho estuda-se um problema de dimensionamento de lotes e distribuição que envolve além de custos de estoques, produção e preparação, custos de transportes para o armazém da empresa. Os custos logísticos estão associados aos contêineres necessários para empacotar os produtos produzidos. A empresa negocia um contrato de longo prazo onde um custo fixo por período é associado ao transporte dos itens, em contrapartida um limite de contêineres é disponibilizado com custo mais baixo que o custo padrão. Caso ocorra um aumento ocasional de demanda, novos contêineres podem ser utilizados, no entanto, seu custo é mais elevado. Um modelo matemático foi proposto na literatura e resolvido utilizando uma heurística Lagrangiana. No presente trabalho a resolução do problema por uma heurística Lagrangiana/surrogate é avaliada. Além disso, é considerada uma extensão do modelo da literatura adicionando restrições de capacidade e permitindo atraso no atendimento a demanda. Testes computacionais mostraram que a heurística Lagrangiana/surrogate é competitiva especialmente quando se têm restrições de capacidade apertada.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mass transfer during osmotic dehydration of apple slices immersed in 40, 50 and 60% (w/w) aqueous sucrose solutions was investigated to evaluate the influence of solution concentration on diffusivities. In the mathematical model, the diffusion coefficients were functions of the local water and sucrose concentration. The mass transfer equations were, simultaneously, solved for water and sucrose using an implicit numerical method. Material coordinates following the shrinkage of the solid were used. The predicted concentration profiles were integrated and compared to experimental data, showing a reasonable agreement with the measured data. on average, the effective diffusion coefficients for water and sucrose decreased as the osmotic solution concentration increased; that is the behavior of the binary coefficients in water-sucrose solutions. However, the diffusivities expressed as a function of the local concentration in the slices varied between the treatments. Water diffusion coefficients showed a remarkable variation throughout the slice and unusual behavior, which was associated to the cellular structure changes observed in tissue immersed in osmotic solutions. Cell structure changes occurred in different ways: moderate plasmolysis at 40%, accentuated plasmolysis at 50% and generalized damage of the cells at 60%. Intact vacuoles were observed after a long time of exposure (30 h) to 40 and 50% solutions. Effects of the concentration on tissue changes make it difficult to generalize the behavior of diffusion coefficients.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, self-synchronization of four non-ideal exciters is examined via numerical simulation. The mathematical model consists of four unbalanced direct Current motors with limited power supply mounted on a flexible Structural frame support. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.
Resumo:
Técnicas de otimização numérica são úteis na solução de problemas de determinação da melhor entrada para sistemas descritos por modelos matemáticos e cujos objetivos podem ser expressos de uma maneira quantitativa. Este trabalho aborda o problema de otimizar as dosagens dos medicamentos no tratamento da AIDS em termos de um balanço entre a resposta terapêutica e os efeitos colaterais. Um modelo matemático para descrever a dinâmica do vírus HIV e células CD4 é utilizado para calcular a dosagem ótima do medicamento no tratamento a curto prazo de pacientes com AIDS por um método de otimização direta utilizando uma função custo do tipo Bolza. Os parâmetros do modelo foram ajustados com dados reais obtidos da literatura. Com o objetivo de simplificar os procedimentos numéricos, a lei de controle foi expressa em termos de uma expansão em séries que, após truncamento, permite obter controles sub-ótimos. Quando os pacientes atingem um estado clínico satisfatório, a técnica do Regulador Linear Quadrático (RLQ) é utilizada para determinar a dosagem permanente de longo período para os medicamentos. As dosagens calculadas utilizando a técnica RLQ , tendem a ser menores do que a equivalente terapia de dose constante em termos do expressivo aumento na contagem das células T+ CD4 e da redução da densidade de vírus livre durante um intervalo fixo de tempo.