935 resultados para latency
Resumo:
The current study investigated the short-term effect of illegitimate tasks on sleep quality, assessed by actigraphy. Seventy-six employees of different service jobs participated in a 2-week data collection. Data were analysed by way of multilevel analyses. As predicted, illegitimate tasks were positively related to sleep fragmentation and sleep-onset latency, but not to sleep efficiency and not to sleep duration. Time pressure, social stressors at work and at home, and the value of the dependent variable from the previous day were controlled. Results confirm the predictive power of illegitimate tasks for a variable that can be considered crucial in the development of long-term outcomes of daily experiences.
Resumo:
Visual exploration of natural scenes imposes demands that differ between the upper and the lower visual hemifield. Yet little is known about how ocular motor performance is affected by the location of visual stimuli or the direction of a behavioural response. We compared saccadic latencies between upper and lower hemifield in a variety of conditions, including short-latency prosaccades, long-latency prosaccades, antisaccades, memory-guided sac- cades and saccades with increased attentional and selection demand. All saccade types, except memory guided saccades, had shorter latencies when saccades were directed to- wards the upper field as compared to downward saccades (p<0.05). This upper field reaction time advantage probably arises in ocular motor rather than visual processing. It may originate in structures involved in motor preparation rather than execution.
Resumo:
PURPOSE Leakage is the most common complication of percutaneous cement augmentation of the spine. The viscosity of the polymethylmethacrylate (PMMA) cement is strongly correlated with the likelihood of cement leakage. We hypothesized that cement leakage can be reduced by sequential cement injection in a vertebroplasty model. METHODS A standardized vertebral body substitute model, consisting of aluminum oxide foams coated by acrylic cement with a preformed leakage path, simulating a ventral vein, was developed. Three injection techniques of 6 ml PMMA were assessed: injection in one single step (all-in-one), injection of 1 ml at the first and 5 ml at the second step with 1 min latency in-between (two-step), and sequential injection of 0.5 ml with 1-min latency between the sequences (sequential). Standard PMMA vertebroplasty cement was used; each injection type was tested on ten vertebral body substitute models with two possible leakage paths per model. Leakage was assessed by radiographs using a zonal graduation: intraspongious = no leakage and extracortical = leakage. RESULTS The leakage rate was significantly lower in the "sequential" technique (2/20 leakages) followed by "two-step" (15/20) and "all-in-one" (20/20) techniques (p < 0.001). The RR for a cement leakage was 10.0 times higher in the "all-in-one" compared to the "sequential" group (95 % confidence intervals 2.7-37.2; p < 0.001). CONCLUSIONS The sequential cement injection is a simple approach to minimize the risk for leakage. Taking advantage of the temperature gradient between body and room temperature, it is possible to increase the cement viscosity inside the vertebra while keeping it low in the syringe. Using sequential injection of small cement volumes, further leakage paths are blocked before further injection of the low-viscosity cement.
Resumo:
Converging evidences from eye movement experiments indicate that linguistic contexts influence reading strategies. However, the question of whether different linguistic contexts modulate eye movements during reading in the same bilingual individuals remains unresolved. We examined reading strategies in a transparent (German) and an opaque (French) language of early, highly proficient French–German bilinguals: participants read aloud isolated French and German words and pseudo-words while the First Fixation Location (FFL), its duration and latency were measured. Since transparent linguistic contexts and pseudo-words would favour a direct grapheme/phoneme conversion, the reading strategy should be more local for German than for French words (FFL closer to the beginning) and no difference is expected in pseudo-words’ FFL between contexts. Our results confirm these hypotheses, providing the first evidence that the same individuals engage different reading strategy depending on language opacity, suggesting that a given brain process can be modulated by a given context.
Resumo:
Recently, ocular vestibular evoked myogenic potentials (oVEMP) have emerged as a tool for assessment of utricular function. They are short-latency myogenic potentials which can be elicited in response to vestibular stimulation, e.g. by air-conducted sound (ACS) or bone-conducted vibration (BCV) (reviewed in (Kantner and Gurkov, 2012)). Otolithic afferent neurons trigger reflexive electromyographic activity of the extraocular muscles which can be recorded beneath the eye contralateral to the stimulated ear by use of surface electrodes.
Resumo:
The cumulative work presented here supports the hypothesis that plasticity in the cerebellar cortex and cerebellar nuclei mediates a simple associative form of motor teaming-Pavlovian eyelid conditioning. It was previously demonstrated that focal ablative lesions of cerebellar anterior lobe or pharmacological block of the cerebellar cortex output disrupted the timing of the conditioned eyeblink response, unmasking a response with a relatively fixed and very short latency to onset. The results of this thesis demonstrate that the short-latency responses are due to associative learning. Unpaired training does not support the acquisition of short-latency responses while the rate of acquisition of short-latency responses during paired training is approximately the same as that of timed conditioned responses. The acquisition of short-latency responses is dependent on an intact cerebellar cortex. Both ablative lesions of the cerebellar cortex and inactivation of cerebellar cortex output with picrotoxin block the acquisition of short-latency responses. However, once the short-latency responses are acquired neither disconnection of cerebellar cortex nor inactivation of the cerebellar nucleus block reacquisition. The results are consistent with the proposal that plasticity in the cerebellar cortex is necessary for learning the timing of conditioned responses, plasticity in the interpositus nucleus mediates the short latency responses, and cerebellar cortical output and mossy fiber input are necessary for the acquisition of short latency responses. ^
Resumo:
Beryllium is a widely distributed, highly toxic metal. When beryllium particulates enter the body, the body's defense mechanisms are engaged. When the body's defenses cannot easily remove the particulates, then a damage and repair cycle is initiated. This cycle produces chronic beryllium disease (CBD), a progressive, fibrotic respiratory involvement which eventually suffocates exposed individuals. ^ Beryllium disease is an occupational disease, and as such it can be prevented by limiting exposures. In the 1940s journalists reported beryllium deaths at Atomic Energy Commission (AEC) facilities, the Department of Energy's (DOE) predecessor organization. These reports energized public pressure for exposure limits, and in 1949 AEC implemented a 2 μg/m3 permissible exposure limit (PEL). ^ The limits appeared to stop acute disease. In contrast, CBD has a long latency period between exposure and diagnosable disease, between one and thirty years. The lack of immediate adverse health consequences masked the seriousness of chronic disease and pragmatically removed CBD from AEC/DOE's political concern. ^ Presently the PEL for beryllium at DOE sites remains at 2 μg/m 3. This limit does not prevent CBD. This conclusion has long been known, although denied until recently. In 1999 DOE acknowledged the limit's ineffectiveness in its federal regulation governing beryllium exposure, 10 CFR 850. ^ Despite this admission, the PEL has not been reduced. The beryllium manufacturer and AEC/DOE have a history of exerting efforts to maintain and protect the status quo. Primary amongst these efforts has been creation and promotion of disinformation within peer reviewed health literature which discusses beryllium, exposures, health effects and treatment, and targeting graduate school students so that their perspective is shaped early. ^ Once indoctrinated with incorrect information, professionals tend to overlook aerosol and respiratory mechanics, immunologic and carcinogenic factors. They then apply tools and perspectives derived from the beryllium manufacturer and DOE's propaganda. Conclusions drawn are incorrect. The result is: health research and associated policy is conducted with incorrect premises. Effective disease management practices are not implemented. ^ Public health protection requires recognition of the disinformation and its implications. When disinformation is identified, then effective health policies and practices can be developed and implemented. ^
Resumo:
Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^
Resumo:
IκB kinase α (IKKα) is one kinase subunit of the IKK complex that is responsible for NF-κB activation. Previous studies have shown that IKKα determines mouse keratinocyte terminal differentiation independent of the NF-κB pathway. Accumulating evidence suggests that IKKα functions as a tumor suppressor in skin carcinogenesis; however, the downstream pathways mediating this function are largely unknown. By using primary cultured keratinocytes, we found that Ikkα-/- cells developed aneuploidy and underwent spontaneous immortalization and transformation while wild type cells underwent terminal differentiation in the same culture condition. Using proteomic analysis we identified nucleophosmin (NPM), a centrosome duplication regulator, as an IKKα substrate. We further demonstrated that IKKα interacted with NPM and colocalized with NPM on the centrosome, suggesting that NPM is a physiological substrate of IKKα. Loss of IKKα reduced centrosome-bound NPM and promoted abnormal centrosome amplification, which contributed to aneuploidy development. Detailed analysis revealed that ablation of IKKα target site serine-125 of NPM induced destabilization of NPM hexamers, disrupted NPM association with centrosomes, and resulted in abnormal centrosome amplification. Re-introduction of IKKα rescued the defect in Ikkα-/- keratinocytes. Thus, IKKα is required for maintaining proper centrosome duplication by phosphorylating NPM. ^ UV is the major etiological agent for human skin cancer and UV-induced mouse skin carcinogenesis is one of the most relevant experimental models for human skin carcinogenesis. Thus, we further evaluated IKKα function in UV-induced skin carcinogenesis in Ikkα+/- mice. We demonstrated that IKKα is also critical in UV skin carcinogenesis, as evidenced by increased tumor multiplicity and reduced tumor latency in Ikkα+/- mice after chronic UVB treatment. Reduced expression of IKKα decreased UV-induced apoptosis and promoted accumulation of P53 mutations in the epidermis. This indicates that IKKα is critical for UV-induced apoptosis in vivo and thus prevents mutation accumulation that is important for tumor development. ^ Together, these findings uncover previously unknown in vivo functions of IKKα in centrosome duplication and apoptosis, thus providing a possible mechanism of how loss of IKKα may contribute to skin carcinogenesis. ^
Resumo:
An experimental procedure was developed using the Brainstem Evoked Response (BER) electrophysiological technique to assess the effect of neurotoxic substances on the auditory system. The procedure utilizes Sprague-Dawley albino rats who have had dural electrodes implanted in their skulls, allowing neuroelectric evoked potentials to be recorded from their brainstems. Latency and amplitude parameters derived from the evoked potentials help assess the neuroanatomical integrity of the auditory pathway in the brainstem. Moreover, since frequency-specific auditory stimuli are used to evoke the neural responses, additional audiometric information is obtainable. An investigation on non-exposed control animals shows the BER threshold curve obtained by tests at various frequencies very closely approximates that obtained by behavioral audibility tests. Thus, the BER appears to be a valid measure of both functional and neuroanatomical integrity of the afferent auditory neural pathway.^ To determine the usefulness of the BER technique in neurobehavioral toxicology research, a known neurotoxic agent, Pb, was studied. Female Sprague-Dawley rats were dosed for 45 days with low levels of Pb acetate in their drinking water, after which BER recordings were obtained. The Pb dosages were determined from the findings of an earlier pilot study. One group of 6 rats received normal tap water, one group of 7 rats received a solution of 0.1% Pb, and another group of 7 rats received a solution of 0.2% Pb. After 45 days, the three groups exhibited blood Pb levels of 4.5 (+OR-) 0.43 (mu)g/100 ml, 37.8 (+OR-) 4.8 (mu)g/100 ml and 47.3 (+OR-) 2.7 (mu)g/100 ml, respectively.^ The results of the BER recording indicated evoked response waveform latency abnormalities in both the Pb-treated groups when midrange frequency (8 kHz to 32 kHz) stimuli were used. For the most part, waveform amplitudes did not vary significantly from control values. BER recordings obtained after a 30-day recovery period indicated the effects seen in the 0.1% Pb group had disappeared. However, those anomalies exhibited by the 0.2% Pb group either remained or increased in number. This outcome indicates a longer lasting or possibly irreversible effect on the auditory system from the higher dose of Pb. The auditory pathway effect appears to be in the periphery, at the level of the cochlea or the auditory (VIII) nerve. The results of this research indicate the BER technique is a valuable and sensitive indicator of low-level toxic effects on the auditory system.^
Resumo:
ts1 is a neurovirulent spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB). MoMuLV-TB causes T-cell lymphoma or lymphoid leukemia in mice after a long latency period whereas ts1 causes a progressive hindlimb paralytic disease after a much shorter latency period. In previous studies, it had been shown that the temperature-sensitive defect resided in the $env$ gene. At the restrictive temperature, the envelope precursor polyprotein, gPr80$\sp{env}$, is inefficiently processed intracellularly into a heterodimer consisting of two cleavage products, gp70 and Prp15E. This inefficient processing is correlated with neurovirulence. In this study, the nucleotide sequences of the env genes for both ts1 and MoMuLV-TB were determined, and the encoded amino acid sequences were deduced from the DNA sequences. There were four unique amino acid substitutions in the gPr80$\sp{env}$ of ts1. In order to determine which unique amino acid was responsible for the phenotypic characteristics of ts1, a set of hybrid genomes was constructed by exchanging restriction fragments between ts1 and MoMuLV-TB. NIH 3T3 cells were transfected with the hybrid genomes to obtain infectious hybrid viruses. Assays of the hybrid viruses showed that a Val-25$\to$Ile substitution in gPr80$\sp{env}$ was responsible for the temperature sensitivity, inefficient processing, and neurovirulence of ts1. In further studies, the Ile-25 in gPr80$\sp{env}$ was substituted with Thr, Ala, Leu, Gly, and Glu by site-directed mutagenesis to generate a new set of mutant viruses, i.e., ts1-T, -A, -L, -G, and -E, respectively. The rank order of the mutants for temperature sensitivity was: ts1-E $>$ ts1-G $>$ ts1-L $>$ ts1-A $>$ ts1 $>$ ts1-T. The degree of temperature sensitivity of each of the mutants also correlated with the degree of inefficient processing of gPr80$\sp{env}$. The mutant viruses were assayed for neurovirulence. ts1-T caused whole body tremor, ts1-A caused hindlimb paralysis, ts1-L caused paraparesis, but ts1-G and -E were not neurovirulent. These results show that inefficient processing of gPr80$\sp{env}$ is correlated with neurovirulence, but if processing of gPr80$\sp{env}$ is too inefficient there is no neurovirulence. Furthermore, the disease profile of each of the neurovirulent viruses depends on the degree of inefficient processing of gPr80$\sp{env}$. ^
Resumo:
Previous studies from our lab have shown distinctive patterns of expression of bcl-2 gene family members in human nonmelanoma skin cancer (NMSC). To further evaluate the significance of these observations and to study the effects of cell death deregulation during skin carcinogenesis, we generated a transgenic mouse model (HK1.bcl-2) using the human keratin 1 promoter to target the expression of a human bcl-2 minigene to the epidermis. Transgenic protein expression was confirmed in all the layers of the epidermis except the stratum corneum using immunohistochemistry. Multifocal epidermal hyperplasia, without associated hyperkeratosis, was observed in newborn HK1.bcl-2 mice. Immunofluorescence staining using monoclonal antibodies specific for a variety of differentiation markers revealed aberrant expression of keratin 6 (K6) in the transgenic epidermis. Epidermal proliferative indexes, assessed by anti-BrdUrd immunofluorescence staining, were similar in control and transgenic newborn mice, but suprabasal proliferating cells were seen within the hyperplastic areas of the transgenic mouse skin. Spontaneous apoptotic indices of the epidermis were similar in both control and HK1.bcl-2 transgenic newborn mice, however, after UV-B irradiation, the number of "sunburn cells" was significantly higher in the control compared to the HK1.bcl-2 transgenic animals.^ Adult HK1.bcl-2 and control littermate mice were used in UV-B and chemical carcinogenesis protocols including DMBA + TPA. UV-B irradiated control and HK1.bcl-2 mice had comparable incidence of tumors than the controls, but the mean latency period was significantly shorter in the HK1.bcl-2 transgenic. Both control and transgenic animals included in chemical carcinogenesis protocols required application of both the initiating (DMBA) and promoting (TPA) agents to develop tumors. The frequency, number, and latency of tumor formation was similar in both groups of animals, however, HK1.bcl-2 mice exhibited a rate of conversion from benign papilloma to carcinoma 2.5 times greater than controls.^ Similar carcinogenesis experiments were performed using newborn mice. HK1.bcl-2 mice treated with UV-B plus TPA have a three fold greater incidence of tumor formation compared to controls littermates. HK1.bcl-2 transgenic animals also exhibited a shorter latency for papilloma formation when treated with DMBA plus TPA.^ HK1.bcl-2/v-Ha-ras double transgenic mice shared phenotypic features of both HK1.v-Ha-ras and HK1.bcl-2 transgenic mice, and exhibited focal areas of augmented hyperplasia. These double transgenic mice were susceptible to tumor formation by treatment with TPA alone.^ Cultures of primary keratinocytes were established from control, HK1.bcl-2, HK1.Ha-ras, and HK1.bcl-2/v-Ha-ras newborn mice. Cell viability was determined after exposure of the cells to UV-B irradiation, DMBA, TPA, or TGF-$\beta$1. Internucleosomal DNA fragmentation ("ladders") and morphological cellular changes compatible with apoptotic cell death were observed after the application of all these agents. HK1.bcl-2 keratinocytes were resistant to cell death induction by all of these agents except TGF-$\beta$1. HK1.Ha-ras cells had a higher spontaneous rate of cell death which could be compensated by co-expression of bcl-2.^ These findings suggest that bcl-2 dependent cell death suppression may be an important component of multistep skin carcinogenesis. ^
Resumo:
Follicular lymphoma is the most common lymphoid malignancy in humans. The bcl-2 transgenic mice, which mimic the human follicular lymphoma, initially exhibit a polyclonal hyperplasia due to the overriding of apoptosis by deregulated bcl-2. After a latency period of 15 month 20% of the animals developed clonal lymphomas. Approximately, 50% of these high grade lymphomas presented chromosomal translocations involving c-myc, suggesting that deregulation of this gene is important in the complementation with bcl-2. E$\mu$-myc x bcl-2 double transgenic mice were generated to assess the ability of this two genes to complement in an in vivo system. The double transgenic mice presented a shortened latency (3-4 weeks) and higher incidence of tumor development. Quantification of the extent of programmed cell death indicated that bcl-2 can abrogate the high rate of apoptotic cell death that results from myc deregulation. Bcl-2-Ig, E$\mu$-myc, and bcl-2/E$\mu$-myc lymphomas were examined using PCR-SSCP to detect the presence of p53 mutations in exons 5-9. A high incidence of p53 mutations in E$\mu$-myc lymphomas suggested that inactivating lesions of p53 may represent an important step in the genetic complementation of c-myc in lymphomagenesis. Surprisingly, p53 mutations were quite uncommon in bcl-2 lymphomas suggesting that inactivating mutations of p53 and overexpression of bcl-2 may not cooperate in lymphoma progression. To assess this question, we generated mice that contained a deregulated bcl-2 gene and were nullizygous for p53 (p53KO). No reduction in the tumor latency was observed in the p53KO/bcl-2-Ig hybrid mice when compared with p53 KO mice. Using splenic mononuclear cells isolated from p53KO mice and bcl-2 transgenic mice we demonstrated that bcl-2 suppresses p53 mediated apoptosis in response to DNA damage initiated by $\gamma$-radiation even though p53 protein is induced normally in the bcl-2 overexpressing cells. Western analysis of the expression of p53 target proteins after $\gamma$-radiation showed a correlation between the p53-dependent induction of bax protein after radiation and the ability of p53 to mediate apoptosis. ^
Resumo:
The most common molecular alterations observed in prostate cancer are increased bcl-2 protein expression and mutations in p53. Understanding the molecular alterations associated with prostate cancer are critical for successful treatment and designing new therapeutic interventions. Hormone-ablation therapy remains the most effective nonsurgical treatment; however, most patients will relapse with hormone-independent, refractory disease. This study addresses how hormone-ablation therapy may increase bcl-2, develops a transgenic model to elucidate the role of bcl-2 multistep prostate carcinogenesis, and assesses how bcl-2 may confer resistance to cell death induction using adenoviral wild-type p53 gene therapy. ^ Two potential androgen response elements were identified in the bcl-2 promoter. Bcl-2 promoter luciferase constructs were transfected into the hormone- sensitive LNCaP prostate cell line. In the presence of dihydrotestosterone, the activity of one bcl-2 promoter luciferase construct was repressed 40% compared to control cells grown in charcoal-stripped serum. Additionally, it was demonstrated that both bcl-2 mRNA and protein were downregulated in the LNCaP cells grown in the presence DHT. This suggests that DHT represses bcl-2 expression through possible direct and indirect mechanisms and that hormone-ablation therapy may actually increases bcl-2 protein. ^ To determine the role of bcl-2 in prostate cancer progression in vivo, probasin-bcl-2 mice were generated where human bcl-2 was targeted to the prostate. Increased bcl-2 expression rendered the ventral prostate more resistant to apoptosis induction following castration. When the probasin-bcl-2 mice were crossed with TRAMP mice, the latency to tumor formation was decreased. The expression of bcl-2 in the double transgenic mice did not affect the incidence of metastases. The double transgenic model will facilitate the study of in vivo effects of specific genetic lesions during the pathogenesis of prostate cancer. ^ The effects of increased bcl-2 protein on wild-type adenoviral p53-mediated cell death were determined in prostatic cell lines. Increased bcl-2 protected PC3 and DU145 cell lines, which possess mutant p53, from p53-mediated cell death and reductions in cell viability. Bcl-2 did not provide the same protective effect in LNCaP cell line, which expresses wild-type p53. This suggests that the ability of bcl-2 to protect against p53-mediated cell death is dependent upon the endogenous status of p53. ^
Resumo:
Gliomas are primary central nervous system (CNS) neoplasms that are believed to arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into two major histopathological groups: oligodendroglial and astroglial tumors. The most malignant of the astroglial tumors is glioblastoma multiforme (GBM). A great deal of genetic and epigenetic alterations have been implicated in gliomagenesis. In particular, PDGF signaling is frequently over-activated in a large number of human gliomas. In order to gain insights into the biology of gliomas, we manage to model human gliomas in mice using a somatic gene transfer approach—RCAS/TVA system. In our previous study, combined activation of AKT and RAS pathways gave rise to glioblastomas from CNS progenitors. In the present study, we demonstrate that in vivo autocrine PDGF stimulation induces oligodendrogliomas and mixed oligoastrocytomas from CNS progenitors and differentiated astrocytes respectively. In culture autocrine PDGF stimulation dedifferentiates astrocytes into progenitor-like cells and blockade of PDGF signaling reverses these phenotypic changes. Experimental disruption of cell cycle arrest pathway, such as Ink4a-Arf loss, is not required for the initiation of PDGF-induced gliomagenesis; instead, this mutation contributes to the tumor progression by enhancing tumor malignancy and shortening tumor latency. P53 deficiency does not promote the PDGF-induced gliomagenesis. In addition, 1p and 19q, often deleted in human oligodendrogliomas, remain intact in these PDGF-induced gliomas. Therefore, our studies suggest that autocrine PDGF stimulation alone may be sufficient to induce gliomagenesis. In contrast to transient stimulation in vitro, constitutive PDGF stimulation activates neither AKT nor RAS/MAPK pathways during gliomagenesis. This results in the formation of oligodendrogliomas, instead of glioblastomas. Sustained activation of the AKT pathway converts PDGF-induced oligodendrogliomas into astrocytomas. Our studies suggest that constitutive PDGF stimulation is not equivalent to transient PDGF stimulation, and that a transition between oligodendroglial and astroglial tumors in humans may be possible, depending on additional alterations. In summary, PDGF signaling plays a pivotal role in gliomagenesis in the mouse, and its hyperactivity is capable of contributing to both oligodendroglial and astroglial tumorigenesis. ^