The role of platelet -derived growth factor (PDGF) signaling in gliomagenesis


Autoria(s): Dai, Chengkai
Data(s)

01/01/2003

Resumo

Gliomas are primary central nervous system (CNS) neoplasms that are believed to arise from astrocytes, oligodendrocytes or their precursors. Gliomas can be classified into two major histopathological groups: oligodendroglial and astroglial tumors. The most malignant of the astroglial tumors is glioblastoma multiforme (GBM). A great deal of genetic and epigenetic alterations have been implicated in gliomagenesis. In particular, PDGF signaling is frequently over-activated in a large number of human gliomas. In order to gain insights into the biology of gliomas, we manage to model human gliomas in mice using a somatic gene transfer approach—RCAS/TVA system. In our previous study, combined activation of AKT and RAS pathways gave rise to glioblastomas from CNS progenitors. In the present study, we demonstrate that in vivo autocrine PDGF stimulation induces oligodendrogliomas and mixed oligoastrocytomas from CNS progenitors and differentiated astrocytes respectively. In culture autocrine PDGF stimulation dedifferentiates astrocytes into progenitor-like cells and blockade of PDGF signaling reverses these phenotypic changes. Experimental disruption of cell cycle arrest pathway, such as Ink4a-Arf loss, is not required for the initiation of PDGF-induced gliomagenesis; instead, this mutation contributes to the tumor progression by enhancing tumor malignancy and shortening tumor latency. P53 deficiency does not promote the PDGF-induced gliomagenesis. In addition, 1p and 19q, often deleted in human oligodendrogliomas, remain intact in these PDGF-induced gliomas. Therefore, our studies suggest that autocrine PDGF stimulation alone may be sufficient to induce gliomagenesis. In contrast to transient stimulation in vitro, constitutive PDGF stimulation activates neither AKT nor RAS/MAPK pathways during gliomagenesis. This results in the formation of oligodendrogliomas, instead of glioblastomas. Sustained activation of the AKT pathway converts PDGF-induced oligodendrogliomas into astrocytomas. Our studies suggest that constitutive PDGF stimulation is not equivalent to transient PDGF stimulation, and that a transition between oligodendroglial and astroglial tumors in humans may be possible, depending on additional alterations. In summary, PDGF signaling plays a pivotal role in gliomagenesis in the mouse, and its hyperactivity is capable of contributing to both oligodendroglial and astroglial tumorigenesis. ^

Identificador

http://digitalcommons.library.tmc.edu/dissertations/AAI3099246

Idioma(s)

EN

Publicador

DigitalCommons@The Texas Medical Center

Fonte

Texas Medical Center Dissertations (via ProQuest)

Palavras-Chave #Health Sciences, Oncology
Tipo

text