931 resultados para host suitability
Resumo:
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.
Resumo:
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-beta-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin-or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Resumo:
Abstract Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.
Resumo:
Abstract Background: Schistosoma mansoni is a blood helminth parasite that causes schistosomiasis, a disease that affects 200 million people in the world. Many orthologs of known mammalian genes have been discovered in this parasite and evidence is accumulating that some of these genes encode proteins linked to signaling pathways in the parasite that appear to be involved with growth or development, suggesting a complex co-evolutionary process. Results: In this work we found 427 genes conserved in the Deuterostomia group that have orthologs in S. mansoni and no members in any nematodes and insects so far sequenced. Among these genes we have identified Insulin Induced Gene (INSIG), Interferon Regulatory Factor (IRF) and vasohibin orthologs, known to be involved in mammals in mevalonate metabolism, immune response and angiogenesis control, respectively. We have chosen these three genes for a more detailed characterization, which included extension of their cloned messages to obtain full-length sequences. Interestingly, SmINSIG showed a 10-fold higher expression in adult females as opposed to males, in accordance with its possible role in regulating egg production. SmIRF has a DNA binding domain, a tryptophan-rich N-terminal region and several predicted phosphorylation sites, usually important for IRF activity. Fourteen different alternatively spliced forms of the S. mansoni vasohibin (SmVASL) gene were detected that encode seven different protein isoforms including one with a complete C-terminal end, and other isoforms with shorter C-terminal portions. Using S. mansoni homologs, we have employed a parsimonious rationale to compute the total gene losses/gains in nematodes, arthropods and deuterostomes under either the Coelomata or the Ecdysozoa evolutionary hypotheses; our results show a lower losses/gains number under the latter hypothesis. Conclusion: The genes discussed which are conserved between S. mansoni and deuterostomes, probably have an ancient origin and were lost in Ecdysozoa, being still present in Lophotrochozoa. Given their known functions in Deuterostomia, it is possible that some of them have been co-opted to perform functions related (directly or indirectly) to host adaptation or interaction with host signaling processes.
Resumo:
Abstract Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.
Resumo:
Background Trypanosomatids of the genera Angomonas and Strigomonas live in a mutualistic association characterized by extensive metabolic cooperation with obligate endosymbiotic Betaproteobacteria. However, the role played by the symbiont has been more guessed by indirect means than evidenced. Symbiont-harboring trypanosomatids, in contrast to their counterparts lacking symbionts, exhibit lower nutritional requirements and are autotrophic for essential amino acids. To evidence the symbiont’s contributions to this autotrophy, entire genomes of symbionts and trypanosomatids with and without symbionts were sequenced here. Results Analyses of the essential amino acid pathways revealed that most biosynthetic routes are in the symbiont genome. By contrast, the host trypanosomatid genome contains fewer genes, about half of which originated from different bacterial groups, perhaps only one of which (ornithine cyclodeaminase, EC:4.3.1.12) derived from the symbiont. Nutritional, enzymatic, and genomic data were jointly analyzed to construct an integrated view of essential amino acid metabolism in symbiont-harboring trypanosomatids. This comprehensive analysis showed perfect concordance among all these data, and revealed that the symbiont contains genes for enzymes that complete essential biosynthetic routes for the host amino acid production, thus explaining the low requirement for these elements in symbiont-harboring trypanosomatids. Phylogenetic analyses show that the cooperation between symbionts and their hosts is complemented by multiple horizontal gene transfers, from bacterial lineages to trypanosomatids, that occurred several times in the course of their evolution. Transfers occur preferentially in parts of the pathways that are missing from other eukaryotes. Conclusion We have herein uncovered the genetic and evolutionary bases of essential amino acid biosynthesis in several trypanosomatids with and without endosymbionts, explaining and complementing decades of experimental results. We uncovered the remarkable plasticity in essential amino acid biosynthesis pathway evolution in these protozoans, demonstrating heavy influence of horizontal gene transfer events, from Bacteria to trypanosomatid nuclei, in the evolution of these pathways.
Resumo:
Abstract Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Resumo:
The aim of this work was to review the role of the host marking pheromone (HMP) and its application in integrated management programs for the fruit flies. Initially the oviposition behavior of tephritids has been analyzed with emphasis on Ceratitis capitata. The deposition of HMP, which consists in the last stage of the oviposition behavior has been characterized and discussed about evolutive aspects and the biological meaning of the tephritidae communication through the HMP. Finally, the perspectives on the use of HMP in the integrated management of fruit flies have been discussed.
Resumo:
Recently, new treatment approaches have been developed to target the host component of periodontal disease. This review aims at providing updated information on host-modulating therapies, focusing on treatment strategies for inhibiting signal transduction pathways involved in inflammation. Pharmacological inhibitors of MAPK, NFκB and JAK/STAT pathways are being developed to manage rheumatoid arthritis, periodontal disease and other inflammatory diseases. Through these agents, inflammatory mediators can be inhibited at cell signaling level, interfering on transcription factors activation and inflammatory gene expression. Although these drugs offer great potential to modulate host response, their main limitations are lack of specificity and developments of side effects. After overcoming these limitations, adjunctive host modulating drugs will provide new therapeutic strategies for periodontal treatment.
Viruses in the marine environment: community dynamics, phage-host interactions and genomic structure
Resumo:
[EN] There are an estimated 1030 viruses in the world oceans, the majority of which are phages (viruses that infect bacteria). Extensive research has demonstrated the significant influence of marine phages on microbial abundance, community structure, genetic exchange and global biogeochemical cycles. In this thesis, we contribute to increase the knowledge about the ecological role of viruses in marine systems, but also we aimed to provide a better understanding about the interactions between phages and their hosts and the genetic pool and biogeography of some the isolated phages genomes.
Resumo:
Grabación realizada por Ciencia compartida (Biblioteca Universitaria)
Resumo:
[EN]A petroleum expert’s view on risks and benefits of oil exploration today in Canarias, considering the climate change facts. The talk starts with an overview of the total petroleum development process, from exploration to post-abandonment, indicating some important risks and benefits for each, from a petroleum industry and a personal perspective. Then there is a part of the talk about the agreed facts of climate change, and what this means for us all. The end of the talk brings together these two sections in a summary.
Resumo:
Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.