931 resultados para genes tagI and mfd
Resumo:
To investigate whether aberrant hypermethylation in plasma DNA could be used as diagnosis makers for hepatocellular carcinoma (HCC), we performed methylation-specific PCR (MSP) to check the methylation status of five tumor associated genes in 36 cases of
Resumo:
Pituitary growth hormone (GH), like several other protein hormones, shows an unusual episodic pattern of molecular evolution in which sustained bursts of rapid change are imposed on long periods of very slow evolution (near-stasis). A marked period of rap
Resumo:
The taxomic classification and phylogenetic relationships within the bear family remain argumentative subjects in recent years. Prior investigation has been concentrated on the application of different mitochondrial (mt) sequence data, herein we employ tw
Resumo:
Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin -28k, paravalbumin, matrix gamma-carboxygluta mate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal Ca2+ signaling in the pcd phenotype.
Resumo:
Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened
Resumo:
Background: Polymorphisms of CLEC4M have been associated with predisposition for infection by the severe acute respiratory syndrome coronavirus (SARS-CoV). DC-SIGNR, a C-type lectin encoded by CLEC4M, is a receptor for the virus. A variable number tandem
Resumo:
The phylogenetic relationships among 12 genera of treefrogs (Family, Rhacophoridae), were investigated based on a large sequence data set, including five nuclear (brain-derived neurotrophic factor, proopiomelanocortin, recombination activating gene 1, tyr
Resumo:
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.
Resumo:
Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern.
Resumo:
Synonymous codon bias has been examined in 78 human genes (19967 codons) and measured by relative synonymous codon usage (RSCU). Relative frequencies of all kinds of dinucleotides in 2,3 or 3,4 codon positions have been calculated, and codon-anticodon bin
Resumo:
728 human genes were divided to four groups according to the GC contents of their coding sequences (from GC<0.43 to GC>0.58). Examination of synonymous-codon bias in the 4 groups show that NTG (N represents any base of T, A, C, G) is most favored and NCG
Resumo:
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Resumo:
Organisms have variable genome sizes and contain different numbers of genes. This difference demonstrates that new gene origination is a fundamental process in evolutionary biology. Though the study of the origination of new genes dated back more than hal
Resumo:
Gene fission and fusion, the processes by which a single gene is split into two separate genes and two adjacent genes are fused into a single gene, respectively, are among the primary processes that generate new genes(1-4). Despite their seeming reversibi