977 resultados para focal-plane-array image processors
Resumo:
The ubiquity of multimodality in hypermedia environments is undeniable. Bezemer and Kress (2008) have argued that writing has been displaced by image as the central mode for representation. Given the current technical affordances of digital technology and user-friendly interfaces that enable the ease of multimodal design, the conspicuous absence of images in certain domains of cyberspace is deserving of critical analysis. In this presentation, I examine the politics of discourses implicit within hypertextual spaces, drawing textual examples from a higher education website. I critically examine the role of writing and other modes of production used in what Fairclough (1993) refers to as discourses of marketisation in higher education, tracing four pervasive discourses of teaching and learning in the current economy: i) materialization, ii) personalization, iii) technologisation, and iv) commodification (Fairclough, 1999). Each of these arguments is supported by the critical analysis of multimodal texts. The first is a podcast highlighting the new architectonic features of a university learning space. The second is a podcast and transcript of a university Open Day interview with prospective students. The third is a time-lapse video showing the construction of a new science and engineering precinct. These three multimodal texts contrast a final web-based text that exhibits a predominance of writing and the powerful absence or silencing of the image. I connect the weightiness of words and the function of monomodality in the commodification of discourses, and its resistance to the multimodal affordances of web-based technologies, and how this is used to establish particular sets of subject positions and ideologies through which readers are constrained to occupy. Applying principles of critical language study by theorists that include Fairclough, Kress, Lemke, and others whose semiotic analysis of texts focuses on the connections between language, power, and ideology, I demonstrate how the denial of image and the privileging of written words in the multimodality of cyberspace is an ideological effect to accentuate the dominance of the institution.
Resumo:
This paper presents an approach for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera’s optical center and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. Previous methods for auto-calibration of cameras based on pure rotations fail to work in these two degenerate cases. In addition, our approach includes a modified RANdom SAmple Consensus (RANSAC) algorithm, as well as improved integration of the radial distortion coefficient in the computation of inter-image homographies. We show that these modifications are able to increase the overall efficiency, reliability and accuracy of the homography computation and calibration procedure using both synthetic and real image sequences
Resumo:
Background: Pre-participation screening is commonly used to measure and assess potential intrinsic injury risk. The single leg squat is one such clinical screening measure used to assess lumbopelvic stability and associated intrinsic injury risk. With the addition of a decline board, the single leg decline squat (SLDS) has been shown to reduce ankle dorsiflexion restrictions and allowed greater sagittal plane movement of the hip and knee. On this basis, the SLDS has been employed in the Cricket Australia physiotherapy screening protocols as a measure of lumbopelvic control in the place of the more traditional single leg flat squat (SLFS). Previous research has failed to demonstrate which squatting technique allows for a more comprehensive assessment of lumbopelvic stability. Tenuous links are drawn between kinematics and hip strength measures within the literature for the SLS. Formal evaluation of subjective screening methods has also been suggested within the literature. Purpose: This study had several focal points namely 1) to compare the kinematic differences between the two single leg squatting conditions, primarily the five key kinematic variables fundamental to subjectively assess lumbopelvic stability; 2) determine the effect of ankle dorsiflexion range of motion has on squat kinematics in the two squat techniques; 3) examine the association between key kinematics and subjective physiotherapists’ assessment; and finally 4) explore the association between key kinematics and hip strength. Methods: Nineteen (n=19) subjects performed five SLDS and five SLFS on each leg while being filmed by an 8 camera motion analysis system. Four hip strength measures (internal/external rotation and abd/adduction) and ankle dorsiflexion range of motion were measured using a hand held dynamometer and a goniometer respectively on 16 of these subjects. The same 16 participants were subjectively assessed by an experienced physiotherapist for lumbopelvic stability. Paired samples t-tests were performed on the five predetermined kinematic variables to assess the differences between squat conditions. A Bonferroni correction for multiple comparisons was used which adjusted the significance value to p = 0.005 for the paired t-tests. Linear regressions were used to assess the relationship between kinematics, ankle range of motion and hip strength measures. Bivariate correlations between hip strength measures and kinematics and pelvic obliquity were employed to investigate any possible relationships. Results: 1) Significant kinematic differences between squats were observed in dominant (D) and non-dominant (ND) end of range hip external rotation (ND p = <0.001; D p = 0.004) and hip adduction kinematics (ND p = <0.001; D p = <0.001). With the mean angle, only the non-dominant leg observed significant differences in hip adduction (p = 0.001) and hip external rotation (p = <0.001); 2) Significant linear relationships were observed between clinical measures of ankle dorsiflexion and sagittal plane kinematic namely SLFS dominant ankle (p = 0.006; R2 = .429), SLFS non-dominant knee (p = 0.015; R2 = .352) and SLFS non-dominant ankle (p = 0.027; R2 = .305) kinematics. Only the dominant ankle (p = 0.020; R2 = .331) was found to have a relationship with the decline squat. 3) Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed. 4) For the non-dominant leg, external rotation strength and abduction strength were found to be significantly correlated with hip rotation kinematics (Newtons r = 0.458 p = 0.049; Normalised for bodyweight: r = 0.469; p = 0.043) and pelvic obliquity (normalised for bodyweight: r = 0.498 p = 0.030) respectively for the SLFS only. No significant relationships were observed in the dominant leg for either squat condition. Some elements of the hip strength screening protocols had linear relationships with kinematics of the lower limb, particularly the sagittal plane movements of the knee and ankle. Strength measures had tenuous associations with the subjective assessments of lumbopelvic stability with no significant relationships being observed; Discussion: The key finding of this study illustrated that kinematic differences can occur at the hip without significant kinematic differences at the knee as a result of the introduction of a decline board. Further observations reinforce the role of limited ankle dorsiflexion range of motion on sagittal plane movement of the hip and knee and in turn multiplanar kinematics of the lower limb. The kinematic differences between conditions have clinical implications for screening protocols that employ frontal plane movement of the knee as a guide for femoral adduction and rotation. Subjects who returned stronger hip strength measurements also appeared to squat deeper as characterised by differences in sagittal plane kinematics of the knee and ankle. Despite the aforementioned findings, the relationship between hip strength and lower limb kinematics remains largely tenuous in the assessment of the lumbopelvic stability using the SLS. The association between kinematics and the subjective measures of lumbopelvic stability also remain tenuous between and within SLS screening protocols. More functional measures of hip strength are needed to further investigate these relationships. Conclusion: The type of SLS (flat or decline) should be taken into account when screening for lumbopelvic stability. Changes to lower limb kinematics, especially around the hip and pelvis, were observed with the introduction of a decline board despite no difference in frontal plane knee movements. Differences in passive ankle dorsiflexion range of motion yielded variations in knee and ankle kinematics during a self-selected single leg squatting task. Clinical implications of removing posterior ankle restraints and using the knee as a guide to illustrate changes at the hip may result in inaccurate screening of lumbopelvic stability. The relationship between sagittal plane lower limb kinematics and hip strength may illustrate that self-selected squat depth may presumably be a useful predictor of the lumbopelvic stability. Further research in this area is required.
Resumo:
Teleradiology allows medical images to be transmitted over electronic networks for clinical interpretation, and for improved healthcare access, delivery and standards. Although, such remote transmission of the images is raising various new and complex legal and ethical issues, including image retention and fraud, privacy, malpractice liability, etc., considerations of the security measures used in teleradiology remain unchanged. Addressing this problem naturally warrants investigations on the security measures for their relative functional limitations and for the scope of considering them further. In this paper, starting with various security and privacy standards, the security requirements of medical images as well as expected threats in teleradiology are reviewed. This will make it possible to determine the limitations of the conventional measures used against the expected threats. Further, we thoroughly study the utilization of digital watermarking for teleradiology. Following the key attributes and roles of various watermarking parameters, justification for watermarking over conventional security measures is made in terms of their various objectives, properties, and requirements. We also outline the main objectives of medical image watermarking for teleradiology, and provide recommendations on suitable watermarking techniques and their characterization. Finally, concluding remarks and directions for future research are presented.
Resumo:
A number of groups around the world are working in the field of three dimensional(3D) ultrasound (US) in order to obtain higher quality diagnostic information. 3D US, in general, involves collecting a sequence of conventional 2D US images along with information on the position and orientation of each image plane. A transformation matrix is calculated relating image space to real world space. This allows image pixels and region of interest (ROI) points drawn on the image to be displayed in 3D. The 3D data can be used for the production of volume or surface rendered images, or for the direct calculation of ROI volumes.
Resumo:
Purpose Arbitrary numbers of corneal confocal microscopy images have been used for analysis of corneal subbasal nerve parameters under the implicit assumption that these are a representative sample of the central corneal nerve plexus. The purpose of this study is to present a technique for quantifying the number of random central corneal images required to achieve an acceptable level of accuracy in the measurement of corneal nerve fiber length and branch density. Methods Every possible combination of 2 to 16 images (where 16 was deemed the true mean) of the central corneal subbasal nerve plexus, not overlapping by more than 20%, were assessed for nerve fiber length and branch density in 20 subjects with type 2 diabetes and varying degrees of functional nerve deficit. Mean ratios were calculated to allow comparisons between and within subjects. Results In assessing nerve branch density, eight randomly chosen images not overlapping by more than 20% produced an average that was within 30% of the true mean 95% of the time. A similar sampling strategy of five images was 13% within the true mean 80% of the time for corneal nerve fiber length. Conclusions The “sample combination analysis” presented here can be used to determine the sample size required for a desired level of accuracy of quantification of corneal subbasal nerve parameters. This technique may have applications in other biological sampling studies.
Resumo:
In 2010, the State Library of Queensland (SLQ) donated their out-of-copyright Queensland images to Wikimedia Commons. One direct effect of publishing the collections at Wikimedia Commons is the ability of general audiences to participate and help the library in processing the images in the collection. This paper will discuss a project that explored user participation in the categorisation of the State Library of Queensland digital image collections. The outcomes of this project can be used to gain a better understanding of user participation that lead to improving access to library digital collections. Two techniques for data collection were used: documents analysis and interview. Document analysis was performed on the Wikimedia Commons monthly reports. Meanwhile, interview was used as the main data collection technique in this research. The data collected from document analysis was used to help the researchers to devise appropriate questions for interviews. The interviews were undertaken with participants who were divided into two groups: SLQ staff members and Wikimedians (users who participate in Wikimedia). The two sets of data collected from participants were analysed independently and compared. This method was useful for the researchers to understand the differences between the experiences of categorisation from both the librarians’ and the users’ perspectives. This paper will provide a discussion on the preliminary findings that have emerged from each group participant. This research provides preliminary information about the extent of user participation in the categorisation of SLQ collections in Wikimedia Commons that can be used by SLQ and other interested libraries in describing their digital content by their categorisations to improve user access to the collection in the future.
Resumo:
Utilization of multiport-antennas represents an appropriate way for the mitigation of multi-path fading in wireless communication systems. However, to obtain low correlation between the signals from different antenna ports and to prevent gain reduction by cross-talk, large antenna elements spacing is expected. Polarization diversity allows signal separation even with small antenna spacing. Although it is effective, polarization diversity alone does not suffice once the number of antennas exceeds the number of orthogonal polarizations. This paper presents an approach which combines a novel array concept with the use of dual polarization. The theory is verified by a compact dual polarized patch antenna array, which consists of four elements and a decoupling network.
Resumo:
This paper presents a reactive Sense and Avoid approach using spherical image-based visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved without requiring an estimate of range. Simulated results for static and dynamic targets are provided using a realistic model of a small fixed wing unmanned aircraft.
Rotorcraft collision avoidance using spherical image-based visual servoing and single point features
Resumo:
This paper presents a reactive collision avoidance method for small unmanned rotorcraft using spherical image-based visual servoing. Only a single point feature is used to guide the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera model ensures the target always remains visible. A decision strategy to stop the avoidance control is derived based on the properties of spiral like motion, and the effect of accurate range measurements on the control scheme is discussed. We show that using a poor range estimate does not significantly degrade the collision avoidance performance, thus relaxing the need for accurate range measurements. We present simulated and experimental results using a small quad rotor to validate the approach.
Resumo:
Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.
Resumo:
Typical flow fields in a stormwater gross pollutant trap (GPT) with blocked retaining screens were experimentally captured and visualised. Particle image velocimetry (PIV) software was used to capture the flow field data by tracking neutrally buoyant particles with a high speed camera. A technique was developed to apply the Image Based Flow Visualization (IBFV) algorithm to the experimental raw dataset generated by the PIV software. The dataset consisted of scattered 2D point velocity vectors and the IBFV visualisation facilitates flow feature characterisation within the GPT. The flow features played a pivotal role in understanding gross pollutant capture and retention within the GPT. It was found that the IBFV animations revealed otherwise unnoticed flow features and experimental artefacts. For example, a circular tracer marker in the IBFV program visually highlighted streamlines to investigate specific areas and identify the flow features within the GPT.
Resumo:
“Slow Horizon” is comprised of six lenticular panels hung in an even, horizontal sequence. As the viewer moves in front of the work, each panel alternates subtly between two vertical colour gradients. From left to right, the panels move through yellow, orange, magenta and violet to ‘midnight blue’. Together, the coloured panels comprise an abstract horizon line that references the changing nature of light at sunset. The scale, movement and chromatic qualities of the panels also allude to the formal characteristics of the screen technologies that pervade contemporary visual culture. “Slow Horizon” contributes to studies in the field of contemporary art. It is particularly concerned with the relationships between abstraction, colour, signification and perception. Since early Modernity, debates concerning representation and the formal qualities of the picture plane have been fundamental to art practice and theory. These debates have often dovetailed with questions of art’s capacity to generate shifts in thought and perception. Practitioners such as Ellsworth Kelly, James Turrell and Ed Ruscha have variously used block and blended colour to engage in these formal, symbolic and perceptual potentials of colour. Using a practice-led research methodology, “Slow Horizon” furthers this creative inquiry. By conflating the reductive visual logics of abstraction and minimalism with the iconic, romantic evocations of sunset imagery, it questions not only the contemporary relationship between abstraction and image-making, but also art’s ability to create moments of stillness and contemplation in a context significantly shaped by screen technologies. “Slow Horizon” has been exhibited internationally as part of “Supermassive” at LA Louver Gallery, Venice, California in 2013. The exhibition was reviewed in The Los Angeles Times.
Resumo:
excerpt: from soil and stone is a work consisting of fifty drawings on paper organised in a grid. Each drawing is small, only 19 by 14 centimetres, and set out in portrait format. They each reference, either explicitly or abstractly, natural phenomena. These include plant forms, pollens, seeds, pods, and leaf shapes and each is painted with a dizzying and liquid array of techniques and technical finesse. Colour is used sparingly but tellingly, and all are generously and wetly composed, with each seeming to flow into the necessary rightness of composition. Within the overall work the feel is sometimes of the archive, a personal kind where pressed flowers are stumbled upon within a book. At other times they seem to image the stellar as one confronts the immensity of some planet suspended in the void. Again, as a recurring theme in Reynolds’ oeuvre, the notion of the taxonomy is sounded. The drawings are laid out to display difference and reveal through contrast essence. It is a mapping that illuminates a generous plentitude.