980 resultados para electronic transition energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assembly processes used to bond components to printed circuit boards can have a significant impact on these boards and the final packaged component. Traditional approaches to bonding components to printed circuit boards results in heat being applied across the whole board assembly. This can lead to board warpage and possibly high residual stresses. Another approach discussed in this paper is to use Variable Frequency Microwave (VFM) heating to cure adhesives and underfills and bond components to printed circuit boards. In terms of energy considerations the use of VFM technology is much more cost effective compared to convection/radiation heating. This paper will discuss the impact of traditional reflow based processes on flexible substrates and it will demonstrate the possible advantages of using localised variable frequency microwave heating to cure materials in an electronic package.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arguments are given that lead to a formalism for calculating near K-edge structure in electron energy loss spectroscopy (EELS). This is essentially a one electron picture, while many body effects may be introduced at different levels, such as the local density approximation to density functional theory or the GW approximation to the electron self-energy. Calculations are made within the all electron LMTO scheme in crystals with complex atomic and electronic structures, and these are compared with experiment. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy levels and the corresponding transition probabilities for allowed and forbidden transitions among the levels of the ground configuration and first 23 excited configurations of fluorine-like Fe XVIII have been calculated using the multiconfigurational Dirac-Fock GRASP code. A total of 379 lowest bound levels of Fe XVIII is presented, and the energy levels are identified in spectroscopic notations. Transition probabilities, oscillator strengths and line strengths for electric dipole (E1), electric quadrupole (E2) and magnetic dipole (M1) transitions among these 379 levels are also presented. The calculated energy levels and transition probabilities are compared with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy particle collisions, in particular low-energy ion-atom collisions, are amenable to semiclassical JWKB phase integral analysis in the complex plane of the internuclear separation. Analytic continuation in this plane requires due attention to the Stokes phenomenon which parametrizes the physical mechanisms of curve crossing, non-crossing, the hybrid Nikitin model, rotational coupling and predissociation. Complex transition points represent adiabatic degeneracies. In the case of two or more such points, the Stokes constants may only be completely determined by resort to the so-called comparison- equation method involving, in particular, parabolic cylinder functions or Whittaker functions and their strong-coupling asymptotics. In particular, the Nikitin model is a two transition-point one-double-pole problem in each half-plane corresponding to either ingoing or outgoing waves. When the four transition points are closely clustered, new techniques are required to determine Stokes constants. However, such investigations remain incomplete, A model problem is therefore solved exactly for scattering along a one-dimensional z-axis. The energy eigenvalue is b(2)-a(2) and the potential comprises -z(2)/2 (parabolic) and -a(2) + b(2)/2z(2) (centrifugal/centripetal) components. The square of the wavenumber has in the complex z-plane, four zeros each a transition point at z = +/-a +/- ib and has a double pole at z = 0. In cases (a) and (b), a and b are real and unitarity obtains. In case (a) the reflection and transition coefficients are parametrized by exponentials when a(2) + b(2) > 1/2. In case (b) they are parametrized by trigonometrics when a(2) + b(2) <1/2 and total reflection is achievable. In case (c) a and b are complex and in general unitarity is not achieved due to loss of flux to a continuum (O'Rourke and Crothers, 1992 Proc. R. Sec. 438 1). Nevertheless, case (c) coefficients reduce to (a) or (b) under appropriate limiting conditions. Setting z = ht, with h a real constant, an attempt is made to model a two-state collision problem modelled by a pair of coupled first-order impact parameter equations and an appropriate (T) over tilde-tau relation, where (T) over tilde is the Stueckelberg variable and tau is the reduced or scaled time. The attempt fails because (T) over tilde is an odd function of tau, which is unphysical in a real collision problem. However, it is pointed out that by applying the Kummer exponential model to each half-plane (O'Rourke and Crothers 1994 J. Phys. B: At. Mel. Opt. Phys. 27 2497) the current model is in effect extended to a collision problem with four transition points and a double pole in each half-plane. Moreover, the attempt in itself is not a complete failure since it is shown that the result is a perfect diabatic inelastic collision for a traceless Hamiltonian matrix, or at least when both diagonal elements are odd and the off-diagonal elements equal and even.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 'Charge transfer from the negative-energy continuum: alternative mechanism for pair production in relativistic atomic collisions', Eichler (1995 Phys. Rev. Lett. 75 3653) proposes an alternative mechanism for capture by pair production, and from it derives an analytic expression for the total cross section with a surprisingly strong energy dependence. We show that, in fact, there is no alternative mechanism; rather the above mechanism may be more transparently viewed as an ionization-like transition in one centre with inclusion of continuum distortion by the second centre. We further show that to Centre the initial and final states on the target and projectile leads to confusion in the momentum transfer vectors, and hence, respectively that the alleged high-energy behaviour is erroneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study a simple model potential energy surface (PES) useful for describing multiple proton translocation mechanisms. The approach presented is relevant to the study of more complex biomolecular systems like enzymes. In this model, at low temperatures, proton tunnelling favours a concerted proton transport mechanism, while at higher temperatures there is a crossover from concerted to stepwise mechanisms; the crossover temperature depends on the energetic features of the PES. We illustrate these ideas by calculating the crossover temperature using energies taken from ab initio calculations on specific systems. Interestingly, typical crossover temperatures lie around room temperature; thus both concerted and stepwise reaction mechanisms should play an important role in biological systems, and one can be easily turned into another by external means such as modifying the temperature or the pH, thus establishing a general mechanism for modulation of the biomolecular function by external effectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simulation scheme is proposed for determining the excess chemical potential of a substance in solution. First, a Monte Carlo simulation is performed with classical models for solute and solvent molecules. A representative sample of these configurations is then used in a hybrid quantum/classical (QM/MM) calculation, where the solute is treated quantum-mechanically, and the average electronic structure is used to construct an improved classical model. This procedure is iterated to self-consistency in the classical model, which in practice is attained in one or two steps, depending on the quality of the initial guess. The excess free energy of the molecule within the QM/MM approach is determined relative to the classical model using thermodynamic perturbation theory with a cumulant expansion. The procedure provides a method of constructing classical point charge models appropriate for the solution and gives a measure of the importance of solvent fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of extensive first-principles calculations we studied the ferroelectric phase transition and the associated isotope effect in KH2PO4 (KDP). Our calculations revealed that the spontaneous polarization of the ferroelectric phase is due to electronic charge redistributions and ionic displacements which are a consequence of proton ordering, and not vice versa. The experimentally observed double-peaked proton distribution in the paraelectric phase cannot be explained by a dynamics of only protons. This requires, instead, collective displacements within clusters that include also the heavier ions. These tunneling clusters can explain the recent evidence of tunneling obtained from Compton scattering measurements. The sole effect of mass change upon deuteration is not sufficient to explain the huge isotope effect. Instead, we find that structural modifications deeply connected with the chemistry of the H bonds produce a feedback effect on tunneling that strongly enhances the phenomenon. The resulting influence of the geometric changes on the isotope effect agrees with experimental data from neutron scattering. Calculations under pressure allowed us to analyze the issue of universality in the disappearance of ferroelectricity upon compression. Compressing DKDP so that the distance between the two peaks in the deuteron distribution is the same as for protons in KDP, corresponds to a modification of the underlying double-well potential, which becomes 23 meV shallower. This energy difference is what is required to modify the O-O distance in such a way as to have the same distribution for protons and deuterons. At the high pressures required experimentally, the above feedback mechanism is crucial to explain the magnitude of the geometrical effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total energy tight-binding model with a basis of just one s state per atom is introduced. It is argued that this simplest of all tight-binding models provides a surprisingly good description of the structural stability and elastic constants of noble metals. By assuming inverse power scaling laws for the hopping integrals and the repulsive pair potential, it is shown that the density matrix in a perfect primitive crystal is independent of volume, and structural energy differences and equations of state are then derived analytically. The model is most likely to be of use when one wishes to consider explicitly and self-consistently the electronic and atomic structures of a generic metallic system, with the minium of computation expense. The relationship to the free-electron jellium model is described. The applicability of the model to other metals is also considered briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An energy storage system (ESS) installed in a power system can effectively damp power system oscillations through controlling exchange of either active or reactive power between the ESS and power system. This paper investigates the robustness of damping control implemented by the ESS to the variations of power system operating conditions. It proposes a new analytical method based on the well-known equal-area criterion and small-signal stability analysis. By using the proposed method, it is concluded in the paper that damping control implemented by the ESS through controlling its active power exchange with the power system is robust to the changes of power system operating conditions. While if the ESS damping control is realized by controlling its reactive power exchange with the power system, effectiveness of damping control changes with variations of power system operating condition. In the paper, an example power system installed with a battery ESS (BESS) is presented. Simulation results confirm the analytical conclusions made in the paper about the robustness of ESS damping control. Laboratory experiment of a physical power system installed with a 35kJ/7kW SMES (Superconducting Magnetic Energy Storage) was carried out to evaluate theoretical study. Results are given in the paper, which demonstrate that effectiveness of SMES damping control realized through regulating active power is robust to changes of load conditions of the physical power system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new method for transmission loss allocation in a deregulated electrical power market. The proposed method is based on physical flow through transmission lines. The contributions of individual loads to the line flows are used as basis for allocating transmission losses to different loads. With minimum assumptions, that sound to be reasonable and cannot be rejected, a novel loss allocation formula is derived. The assumptions made are: a number of currents sharing a transmission line distribute themselves over the cross section in the same manner; that distribution causes the minimum possible power loss. Application of the proposed method is straightforward. It requires only a solved power flow and any simple algorithm for power flow tracing. Both active and reactive powers are considered in the loss allocation procedure. Results of application show the accuracy of the proposed method compared with the commonly used procedures.