914 resultados para dry stenophora
Resumo:
Screening for drought resistance of rainfed lowland rice using drought score (leaf death) as a selection index has a long history of use in breeding programs. Genotypic variation for drought score during the vegetative stage in two dry season screens was examined among 128 recombinant inbred lines from four biparental crosses. The genotypic variation detected for drought score in the dry season was used to examine the reliability of the dry season screening method to estimate relative grain yield of genotypes under different types of drought stress in the wet season. Large genotypic variation for drought score existed in two experiments (A and B). However, there was no relationship between the drought scores of genotypes determined in these two experiments. Different patterns of development and severity of drought stress in these two experiments, i.e. slow development and mild plant water deficit in experiment A and fast development and severe plant water deficit in experiment B, were identified as the major factors contributing to the genotypes responding differently. Larger drought score in the dry season experiments was associated with lower grain yield under specific drought stress conditions in the wet season, but the association was weak to moderate and significant only in particular drought conditions. In most cases, a significant phenotypic and moderate genetic correlation between drought score in the dry season and grain yield in the wet season existed only when both drought score and grain yield of genotypes were affected by similar patterns and severity of drought stress in their respective experimental environments. The dry season environments used to measure genotypic variation for drought score should be managed to correspond to relevant types of drought environment that are frequent in the wet season. The efficiency of using the drought score as an indirect selection criterion for improving grain yield for drought conditions was lower than the direct selection for grain yield, and hence wet season screening with grain yield as a selection criterion would be more efficient. However, using drought score as a selection index, a larger number of genotypes can be evaluated than for wet season grain yield. Therefore, it is possible to apply higher selection intensities using the drought score system, and the selected lines can be further tested for grain yield in the wet season. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
At 38 sites in the dry sclerophyll forests of south-east Queensland, Australia, hollow-bearing trees were studied to determine the effects of past forestry practices on their density, size and spatial distribution. The density of hollow-bearing trees was reduced at sites that had been altered by poisoning and ringbarking of unmerchantable trees. This was especially the case for living hollow-bearing trees that were now at densities too low to support the full range of arboreal marsupials. Although there are presently enough hollow-bearing stags (i.e., dead hollow-bearing trees) to provide additional denning and nesting opportunities, the standing life of these hollow-bearing stags is lower than the living counterparts which means denning and nesting sites may be limited in the near future. The mean diameter at breast height (DBH) of hollow-bearing stags was significantly less than that of living hollow-bearing trees. This indicated that many large hollow-bearing stags may have a shorter standing life than smaller hollow-bearing stags. Hollow-bearing trees appear to be randomly distributed throughout the forest in both silviculturally treated and untreated areas. This finding is at odds with the suggestion by some forest managers that hollow-bearing trees should have a clumped distribution in dry sclerophyll forests of south-east Queensland.
Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies
Resumo:
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We hypothesized that the four rotation crops: wheat (Triticum aestivum L.), sorghum [Sorghum bicolor (L.) Merr.], lablab [Lablab purpureus (L.) Sweet] and mung bean [ Vigna radiata (L.) R. Wilczek] differ in their ability to repair soil structure. The study was conducted on a Typic Haplustert, Queensland, Australia, locally termed a Black Earth and considered a prime cropping soil. Large (0.5-m depth by 0.3-m diam.) soil cores, collected from compacted wheel furrows in an irrigated cotton (Gossypium hirsutum L.) field, were subjected to three, six, or nine wet-dry cycles that simulated local flood irrigation practices. After each cycle, soil profiles were sampled for clod bulk density, image analysis of soil structure, and evapotranspiration. Generally, all crops improved soil structure over the initial field condition but lablab and mung bean gave improvements to greater depths and more rapidly than wheat and sorghum. Mung bean and lablab caused up to a threefold increase in clod porosity in the 0.1- to 0.4-m soil layer after only three wet-dry cycles, whereas sorghum required nine wet-dry cycles to increase clod porosity in only the 0.2- to 0.3-m layer, and wheat gave no improvement even after nine wet-dry cycles. Image analysis of soil structure showed that lablab and mung bean rapidly (by three wet-dry cycles) produced smaller peds with more interconnected pore space than wheat and sorghum. By nine wet-dry cycles, sorghum achieved deep cracking of the soil but the material between the cracks remained large and dense. Evapotranspiration was double under lablab and mung bean compared with wheat and sorghum. Our results indicate greater cycles of wetting and drying under lablab and mung bean than wheat and sorghum that have led to rapid repair of soil compaction.
Resumo:
Edible herbage production and water-use-efficiency of three tree legumes (Leucaena leucocephala cv. Tarramba, L. pallida x L. leucocephala (KX2) and Gliricidia sepium), cut at different times of the year (February, April, June and uncut) were compared in a semi-arid area of Timor Island, Indonesia. Cutting in the early and mid dry-season (April and June) resulted in higher total leaf production (P< 0.05) and water-use-efficiency (P< 0.05), than cutting late in the wet-season (February) or being left uncut. For the leucaena treatments removing leaf in the early to mid dry-season reduced transpiration, saving soil water for subsequent regrowth as evidenced by the higher relative water contents of leaves from these treatments. This cutting strategy can be applied to local farming conditions to increase the supply of feed for livestock during the dry season.