954 resultados para discipline-specific subgroups
Resumo:
Ferr?, S. and King, R. D. (2004) A dichotomic search algorithm for mining and learning in domain-specific logics. Fundamenta Informaticae. IOS Press. To appear
Resumo:
Urquhart, C., Lonsdale, R.,Thomas, R., Spink, S., Yeoman, A., Armstrong, C. & Fenton, R. (2003). Uptake and use of electronic information services: trends in UK higher education from the JUSTEIS project. Program, 37(3), 167-180. Sponsorship: JISC
Resumo:
Eckerdal, A., McCartney, R., Mostr?m, J. E., Sanders, K., Thomas, L., and Zander, C. 2007. From Limen to Lumen: computing students in liminal spaces. In Proceedings of the Third international Workshop on Computing Education Research (Atlanta, Georgia, USA, September 15 - 16, 2007). ICER '07. ACM, New York, NY, 123-132.
Resumo:
null RAE2008
Resumo:
Thatcher, Rhys, and Alan Batterham, 'Development and validation of a sport-specific exercise protocol for elite youth soccer players', Journal of Sports Medicine and Physical Fitness, (2004) 44(1) pp.15-22 RAE2008
Resumo:
Kurki, M. (2006). Causes of a Divided Discipline: Rethinking the Concept of Cause in International Relations theory. Review of International Studies, 32 (2), 189-216. RAE2008
Resumo:
John Warren and Chris Topping (2004). A trait specific model of competition in a spatially structured plant community. Ecological Modelling, 180 pp.477-485 RAE2008
Resumo:
Danny S. Tuckwell, Matthew J. Nicholson, Christopher S. McSweeney, Michael K. Theodorou and Jayne L. Brookman (2005). The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology, 151 (5) pp.1557-1567 Sponsorship: BBSRC / Stapledon Memorial Trust RAE2008
Resumo:
Wydział Neofilologii
Resumo:
This dissertation illustrates the merits of an interdisciplinary approach to religious conversion by employing Lewis Rambo’s systemic stage model to illumine the process of St. Augustine’s conversion. Previous studies of Augustine’s conversion have commonly explored his narrative of transformation from the perspective of one specific discipline, such as theology, history, or psychology. In doing so, they have necessarily restricted attention to a limited set of questions and problems. By bringing these disciplines into a structured, critical conversation, this study demonstrates how formulating and responding to the interplay among personal, social, cultural, and religious dimensions of Augustine’s conversion process may eventuate in the consideration of issues previously unarticulated and thus unaddressed. Rambo (1993) formulates a model of religious change that consists of what he calls context, crisis, quest, encounter, interaction, commitment, and consequences. Change is explained by drawing upon the research and scholarship of psychologists, sociologists, anthropologists, and religionists, in conjunction with the contributions of theologians. This study unfolds in the following chapters: I. Introduction; II. Literature review of scholarship about conversion, with emphasis on explication of Rambo’s model; III. A description of the case of Augustine, drawn from a close reading of the Confessions; IV. Literature review of scholarship about Augustine’s conversion; V. Interdisciplinary interpretation of Augustine’s conversion; and VI. Implications for scholars of conversion, and for pastoral caregivers, as well as recommendations for future research. This dissertation demonstrates how Augustine’s conversion experience was deeply influenced by 1) psychological distress and crisis; 2) the quest to know himself and the divine; 3) interactions with significant others; 4) participation in Christian communities; 5) philosophical and cultural changes; and 6) the encounter with the divine. As such, this study reveals the value of interpreting Augustine’s conversion as an evolving process constituted in multiple factors that can be differentiated from one another, yet clearly interact with one another. It examines the implications of constructing an interdisciplinary approach to Augustine’s conversion narrative for both the academy and the Christian community, and recommends the use of Rambo’s model in studies of other cases of religious change.
Resumo:
In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.
Resumo:
In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In experiments the performance of the resulting system is demonstrated with different real floorplans.
Resumo:
This paper focuses on an efficient user-level method for the deployment of application-specific extensions, using commodity operating systems and hardware. A sandboxing technique is described that supports multiple extensions within a shared virtual address space. Applications can register sandboxed code with the system, so that it may be executed in the context of any process. Such code may be used to implement generic routines and handlers for a class of applications, or system service extensions that complement the functionality of the core kernel. Using our approach, application-specific extensions can be written like conventional user-level code, utilizing libraries and system calls, with the advantage that they may be executed without the traditional costs of scheduling and context-switching between process-level protection domains. No special hardware support such as segmentation or tagged translation look-aside buffers (TLBs) is required. Instead, our ``user-level sandboxing'' mechanism requires only paged-based virtual memory support, given that sandboxed extensions are either written by a trusted source or are guaranteed to be memory-safe (e.g., using type-safe languages). Using a fast method of upcalls, we show how our mechanism provides significant performance improvements over traditional methods of invoking user-level services. As an application of our approach, we have implemented a user-level network subsystem that avoids data copying via the kernel and, in many cases, yields far greater network throughput than kernel-level approaches.
Resumo:
Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.