959 resultados para critical communicative methodology
Resumo:
Measurements of magnetic hysteresis loops in Cu-Al-Mn alloys of different Mn content at low temperatures are presented. The loops are smooth and continuous above a certain temperature, but exhibit a magnetization discontinuity below that temperature. Scaling analysis suggest that this system displays a disorder-induced phase transition line. Measurements allow one to determine the critical exponents ß=0.03±0.01 and ß¿=0.4±0.1, which coincide with those reported recently in a different system, thus supporting the existence of universality for disorder-induced critical points.
Resumo:
Whether for investigative or intelligence aims, crime analysts often face up the necessity to analyse the spatiotemporal distribution of crimes or traces left by suspects. This article presents a visualisation methodology supporting recurrent practical analytical tasks such as the detection of crime series or the analysis of traces left by digital devices like mobile phone or GPS devices. The proposed approach has led to the development of a dedicated tool that has proven its effectiveness in real inquiries and intelligence practices. It supports a more fluent visual analysis of the collected data and may provide critical clues to support police operations as exemplified by the presented case studies.
Resumo:
Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.
Resumo:
This report summarizes research conducted at Iowa State University on behalf of the Iowa Department of Transportation, focusing on the volumetric state of hot-mix asphalt (HMA) mixtures as they transition from stable to unstable configurations. This has raditionally been addressed during mix design by meeting a minimum voids in the mineral aggregate (VMA) requirement, based solely upon the nominal maximum aggregate size without regard to other significant aggregate-related properties. The goal was to expand the current specification to include additional aggregate properties, e.g., fineness modulus, percent crushed fine and coarse aggregate, and their interactions. The work was accomplished in three phases: a literature review, extensive laboratory testing, and statistical analysis of test results. The literature review focused on the history and development of the current specification, laboratory methods of identifying critical mixtures, and the effects of other aggregate-related factors on critical mixtures. The laboratory testing involved three maximum aggregate sizes (19.0, 12.5, and 9.5 millimeters), three gradations (coarse, fine, and dense), and combinations of natural and manufactured coarse and fine aggregates. Specimens were compacted using the Superpave Gyratory Compactor (SGC), conventionally tested for bulk and maximum theoretical specific gravities and physically tested using the Nottingham Asphalt Tester (NAT) under a repeated load confined configuration to identify the transition state from sound to unsound. The statistical analysis involved using ANOVA and linear regression to examine the effects of identified aggregate factors on critical state transitions in asphalt paving mixtures and to develop predictive equations. The results clearly demonstrate that the volumetric conditions of an HMA mixture at the stable unstable threshold are influenced by a composite measure of the maximum aggregate size and gradation and by aggregate shape and texture. The currently defined VMA criterion, while significant, is seen to be insufficient by itself to correctly differentiate sound from unsound mixtures. Under current specifications, many otherwise sound mixtures are subject to rejection solely on the basis of failing to meet the VMA requirement. Based on the laboratory data and statistical analysis, a new paradigm to volumetric mix design is proposed that explicitly accounts for aggregate factors (gradation, shape, and texture).
Resumo:
Critical size at which metamorphosis is initiated represents an important checkpoint in insect development. Here, we use experimental evolution in Drosophila melanogaster to test the long-standing hypothesis that larval malnutrition should favour a smaller critical size. We report that six fly populations subject to 112 generations of laboratory natural selection on an extremely poor larval food evolved an 18% smaller critical size (compared to six unselected control populations). Thus, even though critical size is not plastic with respect to nutrition, smaller critical size can evolve as an adaptation to nutritional stress. We also demonstrate that this reduction in critical size (rather than differences in growth rate) mediates a trade-off in body weight that the selected populations experience on standard food, on which they show a 15-17% smaller adult body weight. This illustrates how developmental mechanisms that control life history may shape constraints and trade-offs in life history evolution.
Resumo:
We make a thorough study of the process of three-body kaon absorption in nuclei, in connection with a recent FINUDA experiment which claims the existence of a deeply bound kaonic state from the observation of a peak in the Lambdad invariant mass distribution following K- absorption on 6Li. We show that the peak is naturally explained in terms of K- absorption from three nucleons leaving the rest as spectators. We can also reproduce all the other observables measured in the same experiment and used to support the hypothesis of the deeply bound kaon state. Our study also reveals interesting aspects of kaon absorption in nuclei, a process that must be understood in order to make progress in the search for K- deeply bound states in nuclei.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
We investigate within mean-field theory the influence of a one-dimensional optical lattice and of trapped degenerate fermions on the critical rotational frequency for vortex line creation in a Bose-Einstein condensate. We consider laser intensities of the lattice such that quantum coherence across the condensate is ensured. We find a sizable decrease of the thermodynamic critical frequency for vortex nucleation with increasing applied laser strength and suggest suitable parameters for experimental observation. Since 87Rb-40K mixtures may undergo collapse, we analyze the related question of how the optical lattice affects the mechanical stability of the system.
Resumo:
OBJECTIVE: To compare the management of invasive candidiasis between infectious disease and critical care specialists. DESIGN AND SETTING: Clinical case scenarios of invasive candidiasis were presented during interactive sessions at national specialty meetings. Participants responded to questions using an anonymous electronic voting system. PATIENTS AND PARTICIPANTS: Sixty-five infectious disease and 51 critical care physicians in Switzerland. RESULTS: Critical care specialists were more likely to ask advice from a colleague with expertise in the field of fungal infections to treat Candida glabrata (19.5% vs. 3.5%) and C. krusei (36.4% vs. 3.3%) candidemia. Most participants reported that they would change or remove a central venous catheter in the presence of candidemia, but 77.1% of critical care specialists would start concomitant antifungal treatment, compared to only 50% of infectious disease specialists. Similarly, more critical care specialists would start antifungal prophylaxis when Candida spp. are isolated from the peritoneal fluid at time of surgery for peritonitis resulting from bowel perforation (22.2% vs. 7.2%). The two groups equally considered Candida spp. as pathogens in tertiary peritonitis, but critical care specialists would more frequently use amphotericin B than fluconazole, caspofungin, or voriconazole. In mechanically ventilated patients the isolation of 10(4) Candida spp. from a bronchoalveolar lavage was considered a colonizing organism by 94.9% of infectious disease, compared to 46.8% of critical care specialists, with a marked difference in the use of antifungal agents (5.1% vs. 51%). CONCLUSIONS: These data highlight differences between management approaches for candidiasis in two groups of specialists, particularly in the reported use of antifungals.
Resumo:
The formation of a hollow cellular sphere is often one of the first steps of multicellular embryonic development. In the case of Hydra, the sphere breaks its initial symmetry to form a foot-head axis. During this process a gene, ks1, is increasingly expressed in localized cell domains whose size distribution becomes scale-free at the axis-locking moment. We show that a physical model based solely on the production and exchange of ks1-promoting factors among neighboring cells robustly reproduces the scaling behavior as well as the experimentally observed spontaneous and temperature-directed symmetry breaking.
Resumo:
This aim of this article is to reflect on Michel Foucault's reading of Plutarch's Eroticus in his Histoire de la sexualité, putting emphasis on the fact that, against what it is affirmed by the French thinker, the real debate is not, in the author's opinion, about true pleasure, that obtained by the erastés from his erómenos or that obtained by husbands from their wives, but the need to assign also love and friendship (éros kaì philia) to the conjugal love.