947 resultados para control volume
Resumo:
Young novice drivers constitute a major public health concern due to the number of crashes in which they are involved, and the resultant injuries and fatalities. Previous research suggests psychological traits (reward sensitivity, sensation seeking propensity), and psychological states (anxiety, depression) influence their risky behaviour. The relationships between gender, anxiety, depression, reward sensitivity, sensation seeking propensity and risky driving are explored. Participants (390 intermediate drivers, 17-25 years) completed two online surveys at a six month interval. Surveys comprised sociodemographics, Brief Sensation Seeking Scale, Kessler’s Psychological Distress Scale, an abridged Sensitivity to Reward Questionnaire, and risky driving behaviour was measured by the Behaviour of Young Novice Drivers Scale. Structural equation modelling revealed anxiety, reward sensitivity and sensation seeking propensity predicted risky driving. Gender was a moderator, with only reward sensitivity predicting risky driving for males. Future interventions which consider the role of rewards, sensation seeking, and mental health may contribute to improved road safety for younger and older road users alike.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
In this study the interplay effects for Enhanced Dynamic Wedge (EDW) treatments are experimentally investigated. Single and multiple field EDW plans for different wedge angles were delivered to a phantom and detector on a moving platform, with various periods, amplitudes for parallel and perpendicular motions. A four field 4D CT planned lung EDW treatment was delivered to a dummy tumor over four fractions. For the single field parallel case the amplitude and the period of motion both affect the interplay resulting in the appearance of a step function and penumbral cut off with the discrepancy worst where collimator-tumor speed is similar. For perpendicular motion the amplitude of tumor motion is the only dominant factor. For large wedge angle the dose discrepancy is more pronounced compared to the small wedge angle for the same field size and amplitude-period values. For a small field size i.e. 5 × 5 cm2 the loss of wedged distribution was observed for both 60º and 15º wedge angles for of parallel and perpendicular motions. Film results from 4D CT planned delivery displayed a mix of over and under dosages over 4 fractions, with the gamma pass rate of 40% for the averaged film image at 3%/1 mm DTA (Distance to Agreement). Amplitude and period of the tumor motion both affect the interplay for single and multi-field EDW treatments and for a limited (4 or 5) fraction delivery there is a possibility of non-averaging of the EDW interplay.
Resumo:
In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of cross- entropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.
Resumo:
Purpose: Young novice drivers experience significantly greater risk of being injured or killed in car crashes than older more experienced drivers. This research utilised a qualitative approach guided by the framework of Akers’ social learning theory. It explored young novice drivers’ perspectives on risky driving including rewards and punishments expected from and administered by parents, friends, and police, imitation of parents’ and friends’ driving, and advantages and disadvantages of risky driving. Methods: Twenty-one young drivers (12 females, 9 males) aged 16–25 years (M = 17.71 years, SD = 2.15) with a Learner (n = 11) or Provisional (n = 10) driver licence participated in individual or small group interviews. Findings and conclusions: Content analysis supported four themes: (1) rewards and (2) punishments for risky driving, and the influence of (3) parents and (4) friends. The young novice drivers differed in their vulnerability to the negative influences of friends and parents, with some novices advising they were able to resist risky normative influences whilst others felt they could not. The authority of the police as enforcers of road rules was either accepted and respected or seen as being used to persecute young novices. These findings suggest that road safety interventions should consider the normative influence of parents and friends on the risky and safe behaviour of young novices. Police were also seen as influential upon behaviour. Future research should explore the complicated relationship between parents, friends, the police, young novices, and their risky driving behaviour.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
This work presents two UAS See and Avoid approaches using Fuzzy Control. We compare the performance of each controller when a Cross-Entropy method is applied to optimase the parameters for one of the controllers. Each controller receive information from an image processing front-end that detect and track targets in the environment. Visual information is then used under a visual servoing approach to perform autonomous avoidance. Experimental flight trials using a small quadrotor were performed to validate and compare the behaviour of both controllers
Resumo:
This paper investigates the policies and instruments adopted in Hong Kong to control the carbon emissions of construction facilities, including the whole building life cycle: production of material stage, construction stage, operation stage and demolition stage. This commences with a literature review comparing activities world-wide to those in Hong Kong to identify the main issues at stake, followed by a report on a series of local interviews to evaluate the present situation in Hong Kong, as well as future opportunities for local carbon mitigation. The interviewees included practitioners from engineering contracting firms, consulting firms, clients and energy provider, together with two university experts and a counsellor. A small case study is also provided of a building project in Hong Kong to illustrate some of the innovative design aspects being incorporated into buildings in Hong Kong as a result of the current emphasis on sustainability. The paper concludes with a summary of main findings and proposals for improvement in policy related to carbon mitigation and building sustainability in Hong Kong.
Resumo:
Background Socioeconomically-disadvantaged adults in developed countries experience a higher prevalence of a number of chronic diseases, such as cardiovascular disease, type 2 diabetes, osteoarthritis and some forms of cancer. Overweight and obesity are major risk factors for these diseases. Lower socioeconomic groups have a greater prevalence of overweight and obesity and this may contribute to their higher morbidity and mortality. International studies suggest that socioeconomic groups may differ in their self-perceptions of weight status and their engagement in weightcontrol behaviours (WCBs). Research has shown that lower socioeconomic adults are more likely to underestimate their weight status, and are less likely to engage in WCBs. This may contribute (in part) to the marked inequalities in weight status observed at the population level. There are few, and somewhat limited, Australian studies that have examined the types of weight-control strategies people adopt, the barriers to their weight control, the determinants of their perceived weight status and WCBs. Furthermore, there are no known Australian studies that have examined socioeconomic differences in these factors to better understand the reasons for socioeconomic inequalities in weight status. Hence, the overall aim of this Thesis is to examine why socioeconomically-disadvantaged group experience a greater prevalence of overweight and obesity than their more-advantaged counterparts. Methods This Thesis used data from two sources. Men and women aged 45 to 60 years were examined from both data source. First, the longitudinal Australian Diabetes, Obesity and Lifestyle (AusDiab) Study were used to advance our knowledge and understanding of socioeconomic differences in weight change, perceived weight status and WCBs. A total of 2753 participants with measured weights at both baseline (1999-2000) and follow-up (2004-2005) were included in the analyses. Percent weight change over the five-year interval was calculated and perceived weight status, WCBs and highest attained education were collected at baseline. Second, the Candidate conducted a postal questionnaire from 1013 Brisbane residents (69.8 % response rate) to investigate the relationship between socioeconomic position, determinants of perceived weight status, WCBs, and barriers and reasons to weight control. A test-retest reliability study was conducted to determine the reliability of the new measures used in the questionnaire. Most new measures had substantial to almost perfect reliability when considering either kappa coefficient or crude agreement. Results The findings from the AusDiab Study (accepted for publication in the Australian and New Zealand Journal of Public Health) showed that low-educated men and women were more likely to be obese at baseline compared to their higheducated respondents (O.R. = 1.97, 95 % C.I. = 1.30-2.98 and O.R. = 1.52, 95 % C.I. = 1.03-2.25, respectively). Over the five year follow-up period (1999-2000 to 2004- 05) there were no socioeconomic differences in weight change among men, however socioeconomically-disadvantaged women had greater weight gains. Participants perceiving themselves as overweight gained less weight than those who saw themselves as underweight or normal weight. There was no relationship between engaging in WCBs and five-year weight change. The postal questionnaire data showed that socioeconomically-disadvantaged groups were less likely to engage in WCBs. If they did engage in weight control, they were less likely to adopt exercise strategies, including moderate and vigorous physical activities but were more likely to decrease their sitting time to control their weight. Socioeconomically-disadvantaged adults reported more barriers to weight control; such as perceiving weight loss as expensive, requiring a lot of cooking skills, not being a high priority and eating differently from other people in the household. These results have been accepted for publication in Public Health Nutrition. The third manuscript (under review in Social Science and Medicine) examined socioeconomic differences in determinants of perceived weight status and reasons for weight control. The results showed that lower socioeconomic adults were more likely to specify the following reasons for weight control: they considered themselves to be too heavy, for occupational requirements, on recommendation from their doctor, family members or friends. Conversely, high-income adults were more likely to report weight control to improve their physical condition or to look more attractive compared with those on lower-incomes. There were few socioeconomic differences in the determinants of perceived weight status. Conclusions Education inequalities in overweight/obesity among men and women may be due to mis-perceptions of weight status; overweight or obese individuals in loweducated groups may not perceive their weight as problematic and therefore may not pay attention to their energy-balance behaviours. Socioeconomic groups differ in WCBs, and their reasons and perceived barriers to weight control. Health promotion programs should encourage weight control among lower socioeconomic groups. More specifically, they should encourage the engagement of physical activity or exercise and dietary strategies among disadvantaged groups. Furthermore, such programs should address potential barriers for weight control that disadvantaged groups may encounter. For example, disadvantaged groups perceive that weight control is expensive, requires cooking skills, not a high priority and eating differently from other people in the household. Lastly, health promotion programs and policies aimed at reducing overweight and obesity should be tailored to the different reasons and motivations to weight control experienced by different socioeconomic groups. Weight-control interventions targeted at higher socioeconomic groups should use improving physical condition and attractiveness as motivational goals; while, utilising social support may be more effective for encouraging weight control among lower socioeconomic groups.
Resumo:
The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.
Resumo:
Background: Adolescent idiopathic scoliosis is a complex three-dimensional deformity, involving a lateral deformity in the coronal plane and axial rotation of the vertebrae in the transverse plane. Gravitational loading plays an important biomechanical role in governing the coronal deformity, however, less is known about how they influence the axial deformity. This study investigates the change in three-dimensional deformity of a series of scoliosis patients due to compressive axial loading. Methods: Magnetic resonance imaging scans were obtained and coronal deformity (measured using the coronal Cobb angle) and axial rotations measured for a group of 18 scoliosis patients (Mean major Cobb angle was 43.4 o). Each patient was scanned in an unloaded and loaded condition while compressive loads equivalent to 50% body mass were applied using a custom developed compressive device. Findings: The mean increase in major Cobb angle due to compressive loading was 7.4 o (SD 3.5 o). The most axially rotated vertebra was observed at the apex of the structural curve and the largest average intravertebral rotations were observed toward the limits of the coronal deformity. A level-wise comparison showed no significant difference between the average loaded and unloaded vertebral axial rotations (intra-observer error = 2.56 o) or intravertebral rotations at each spinal level. Interpretation: This study suggests that the biomechanical effects of axial loading primarily influence the coronal deformity, with no significant change in vertebral axial rotation or intravertebral rotation observed between the unloaded and loaded condition. However, the magnitude of changes in vertebral rotation with compressive loading may have been too small to detect given the resolution of the current technique.
Resumo:
Monitoring environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; online collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
In a world where governments increasingly attempt to impose regulation on all professional activities, this paper advocates that professional standards for teachers be developed ‘by the profession for the profession’. Foucauldian archaeology is applied to two teacher standards documents recently published in Australia, one developed at national governmental level and the other by geography teachers through their professional associations. The excavation reveals that both students and geography teachers themselves are better served when teachers assert their own definition of professionalism and thus reclaim their professional territory, rather than being compliant with generic governmental agendas. Whilst we use Australia as an illustrative example, our findings are applicable to all other countries where governments attempt to impose external professional standards on the teaching profession.
Resumo:
The ability of organizational members to identify and analyse stakeholder opinion is critical to the management of corporate reputation. In spite of the significance of these abilities to corporate reputation management, there has been little effort to document and describe internal organizational influences on such capacities. This ethnographic study conducted in Red Cross Queensland explores how cultural knowledge structures derived from shared values and assumptions among organizational members influence their conceptualisations of organizational reputation. Specifically, this study explores how a central attribute of organizational culture – the property of cultural selection – influences perceptions of organizational reputation held by organizational members. We argue that these perceptions are the result of collective processes that synthesise (with varying degrees of consensus) member conceptualisations, interpretations, and representations of environmental realities in which their organization operates. Findings and implications for organizational action suggest that while external indicators of organizational reputation are acknowledged by members as significant, the internal influence of organizational culture is a far stronger influence on organizational action.