971 resultados para charged particle dynamics
Resumo:
There is increasing evidence that parenting and feeding interact to influence children’s eating behaviour and weight status. Interpretation of existing research is complicated by the lack of consensus in the conceptualisation and measurement of both ‘parenting’ and ‘feeding’, particularly the distinction between ‘styles’, ‘dimensions’ and ‘practices’. In addition, the lack of validated tools to concurrently assess feeding practices in infancy limits the capacity to examine the relationships between parenting and feeding in infancy and their short- and long-term influence on weight status. In this paper we provide an overview of the constructs examined in this emerging area of research, highlight the conceptual, definitional and measurement challenges and propose a unifying model to aid design and the interpretation of intervention studies. Progress on these methodological issues will contribute to the robust evidence required to justify investment in interventions that focus on parenting and feeding in the context of child obesity prevention.
Resumo:
Safety psychology and workplace safety Commitment, Motivational and attitudinal components of safety Leadership Group Dynamics and Group Change Case Study from Construction
Resumo:
This paper draws on a larger study of the uses of Australian user-created content and online social networks to examine the relationships between professional journalists and highly engaged Australian users of political media within the wider media ecology, with a particular focus on Twitter. It uses an analysis of topic based conversation networks using the #ausvotes hashtag on Twitter around the 2010 federal election to explore the key themes and issues addressed by this Twitter community during the campaign, and finds that Twitter users were largely commenting on the performance of mainstream media and politicians rather than engaging in direct political discussion. The often critical attitude of Twitter users towards the political establishment mirrors the approach of news and political bloggers to political actors, nearly a decade earlier, but the increasing adoption of Twitter as a communication tool by politicians, journalists, and everyday users alike makes a repetition of the polarisation experienced at that time appear unlikely.
Resumo:
“Particle Wave” is comprised of six lenticular panels hung in an even, horizontal sequence. Each panel alternates between two solid colour fields as you move past it. There are six colours in total, with each colour represented twice in the spectrum. From left to right, the panels move through yellow, orange, magenta, violet, blue, green and back to yellow. The work’s title refers to the two competing theories of light, which can be understood as either paradoxical or complementary. Like these theories, the experience of viewing the work catches us in a double bind. While we can orient ourselves to see solid colour fields one by one, we are never able to fully capture them all at once. In fact, it is only through our continual movement, and the subsequent transitioning of visible colours that we register the complete spectrum. Through this viewing experience, “Particle Wave” actively engages with our peripheral vision and the transitory nature of perception. It plays with the fundamental pleasures of colour and vision, and the uneasy seduction of being unable to grasp multiple phenomena simultaneously.
Resumo:
A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM2.5) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10-40 % (by energy). With ethanol fumigation, NO and PM2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles; consequently, using a diesel oxidation catalyst will also assist in reducing particle number emissions.
Resumo:
The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.
Resumo:
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).
Resumo:
This paper reports on an experiment that was conducted to determine the extent to which group dynamics impacts on the effectiveness of software development teams. The experiment was conducted on software engineering project students at the Queensland University of Technology (QUT).
Resumo:
An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment. © 2011 American Chemical Society.
Resumo:
Building Web 2.0 sites does not necessarily ensure the success of the site. We aim to better understand what improves the success of a site by drawing insight from biologically inspired design patterns. Web 2.0 sites provide a mechanism for human interaction enabling powerful intercommunication between massive volumes of users. Early Web 2.0 site providers that were previously dominant are being succeeded by newer sites providing innovative social interaction mechanisms. Understanding what site traits contribute to this success drives research into Web sites mechanics using models to describe the associated social networking behaviour. Some of these models attempt to show how the volume of users provides a self-organising and self-contextualisation of content. One model describing coordinated environments is called stigmergy, a term originally describing coordinated insect behavior. This paper explores how exploiting stigmergy can provide a valuable mechanism for identifying and analysing online user behavior specifically when considering that user freedom of choice is restricted by the provided web site functionality. This will aid our building better collaborative Web sites improving the collaborative processes.
Resumo:
Positive and negative ion electrospray ionization (ESI) mass spectra of complexes of positively charged small molecules (distamycin, Hoechst 33258, [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2) have been compared. [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2 bind to DNA by intercalation. Negative ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA showed ions from DNA-ligand complexes consistent with solution studies. In contrast, only ions from freeDNAwere present in positive ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA, highlighting the need for obtaining ESI mass spectra of non-covalent complexes under a range of experimental conditions. Negative ion spectra of mixtures of the minor groove binder Hoechst 33258 with DNA containing a known minor groove binding sequence were dominated by ions from a 1:1 complex. In contrast, in positive ion spectra there were also ions present from a 2:1 (Hoechst 33258: DNA) complex, suggesting an alternative binding mode was possible either in solution or in the gas phase. When Hoechst 33258 was mixed with a DNA sequence lacking a high affinity minor groove binding site, the negative ion ESI mass spectra showed that 1:1 and 2:1 complexes were formed, consistent with existence of binding modes other than minor groove binding. The data presented suggest that comparison of positive and negative ion ESI-MS spectra might provide an insight into various binding modes in both solution and the gas phase.