926 resultados para cameras and camera accessories
Resumo:
Aims - To study the interchangeability of the measurements of the optic disc topography obtained by one computerised image analyser and one confocal laser tomographic scanner. Methods - One eye of 28 patients with glaucoma or glaucoma suspects was studied. All cases had simultaneous stereoscopic disc photographs taken with the fundus camera Topcon TRC-SS and optic disc examination with the Heidelberg retina tomograph (HRT) during the same visit. The optic disc photographs were digitised and analysed with the Topcon ImageNet (TI) system. Three variables of the optic disc topography provided by the TI and the HRT were compared - cup volume (CV), rim area (RA), and cup area to disc area ratio (CA/DA). Results - The mean values of CV and RA provided by the TI (0.52 (SD 0.32) mm and 1.58 (0.39) mm , respectively) were greater (p <0.01) than the mean values of CV and RA determined by the HRT (0.32 (0.25) mm , and 1.33 (0.47) mm , respectively). The mean value of CA/DA provided by the TI (0.42 (0.14)) and the HRT (0.42 (0.18)) was similar (p = 0.93). Correlation coefficients between measurements obtained by the two methods ranged from 0.53 to 0.73. Conclusion - There was a significant discrepancy in the measurements of rim area and cup volume of the optic disc obtained by a computerised image analyser and a laser scanning tomograph.
Resumo:
We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.
Resumo:
ULTRACAM is a high-speed three-colour CCD camera designed to provide imaging photometry at high temporal resolutions. The instrument is highly portable and will be used at a number of large telescopes around the world. ULTRACAM was successfully commissioned on the 4.2-m William Herschel Telescope on La Palma on 16 May 2002 over 3 months ahead of schedule and within budget. The instrument was funded by PPARC and designed and built by a consortium involving the Universities of Sheffield Southampton and the UKATC Edinburgh. We present an overview of the design and performance characteristics of ULTRACAM and highlight some of its most recent scientific results.
Resumo:
This paper examines the use of visual technologies by political activists in protest situations to monitor police conduct. Using interview data with Australian video activists, this paper seeks to understand the motivations, techniques and outcomes of video activism, and its relationship to counter-surveillance and police accountability. Our data also indicated that there have been significant transformations in the organization and deployment of counter-surveillance methods since 2000, when there were large-scale protests against the World Economic Forum meeting in Melbourne accompanied by a coordinated campaign that sought to document police misconduct. The paper identifies and examines two inter-related aspects of this: the act of filming and the process of dissemination of this footage. It is noted that technological changes over the last decade have led to a proliferation of visual recording technologies, particularly mobile phone cameras, which have stimulated a corresponding proliferation of images. Analogous innovations in internet communications have stimulated a coterminous proliferation of potential outlets for images Video footage provides activists with a valuable tool for safety and publicity. Nevertheless, we argue, video activism can have unintended consequences, including exposure to legal risks and the amplification of official surveillance. Activists are also often unable to control the political effects of their footage or the purposes to which it is used. We conclude by assessing the impact that transformations in both protest organization and media technologies might have for counter-surveillance techniques based on visual surveillance.
Resumo:
The aim of this paper is to demonstrate the applicability and the effectiveness of a computationally demanding stereo matching algorithm in different lowcost and low-complexity embedded devices, by focusing on the analysis of timing and image quality performances. Various optimizations have been implemented to allow its deployment on specific hardware architectures while decreasing memory and processing time requirements: (1) reduction of color channel information and resolution for input images, (2) low-level software optimizations such as parallel computation, replacement of function calls or loop unrolling, (3) reduction of redundant data structures and internal data representation. The feasibility of a stereovision system on a low cost platform is evaluated by using standard datasets and images taken from Infra-Red (IR) cameras. Analysis of the resulting disparity map accuracy with respect to a full-size dataset is performed as well as the testing of suboptimal solutions
Resumo:
The production of shock- and collimated jet-like features is recorded from the self-emission of a plasma using a 16- frame camera, which can show the progression of the interaction over short (100s ns) durations. A cluster of laser beams, with intensity 1015 W/cm2, was focused onto a planar aluminum foil to produce a plasma that expanded into 0.7 mbar of argon gas. The acquisition of 16 ultrafast images on a single shot allows prompt spatial and temporal characterization of the plasma and enables the velocity of the jet- and shock-like features to be calculated.
Resumo:
Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE ) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS ) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMC's smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high ("probable") and moderate ("possible ") likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.
Resumo:
We have obtained H$\alpha$ high spatial and time resolution observations of the upper solar chromosphere and supplemented these with multi-wavelength observations from the Solar Dynamic Observatory (SDO) and the {\it Hinode} ExtremeUltraviolet Imaging Spectrometer (EIS). The H$\alpha$ observations were conducted on 11 February 2012 with the Hydrogen-Alpha Rapid Dynamics Camera (HARDcam) instrument at the National Solar Observatory's Dunn Solar Telescope. Our H$\alpha$ observations found large downflows of chromospheric material returning from coronal heights following a failed prominence eruption. We have detected several large condensations ("blobs") returning to the solar surface at velocities of $\approx$200 km s$^{-1}$ in both H$\alpha$ and several SDO AIA band passes. The average derived size of these "blobs" in H$\alpha$ is 500 by 3000 km$^2$ in the directions perpendicular and parallel to the direction of travel, respectively. A comparison of our "blob" widths to those found from coronal rain, indicate there are additional smaller, unresolved "blobs" in agreement with previous studies and recent numerical simulations. Our observed velocities and decelerations of the "blobs" in both H$\alpha$ and SDO bands are less than those expected for gravitational free-fall and imply additional magnetic or gas pressure impeding the flow. We derived a kinetic energy $\approx$2 orders of magnitude lower for the main eruption than a typical CME, which may explain its partial nature.
Resumo:
We study properties of intensity fluctuations in NOAA Active Region 11250 observed on 13 July 2011 starting at UT 13:32. Included are data obtained in the EUV bands of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) as well as nearly simultaneous observations of the chromosphere made, at much higher spatial and temporal resolution, with the Rapid Oscillations in the Solar Atmosphere (ROSA) and Hydrogen-Alpha Rapid Dynamics camera (HARDcam) systems at the Dunn Solar Telescope. A complex structure seen in both the ROSA/HARDcam and SDO data sets comprises a system of loops extending outward from near the boundary of the leading sunspot umbra. It is visible in the ROSA Ca II K and HARDcam Hα images, as well as the SDO 304 Å, 171 Å and 193 Å channels, and it thus couples the chromosphere, transition region and corona. In the ground-based images the loop structure is 4.1 Mm long. Some 17.5 Mm, can be traced in the SDO/AIA data. The chromospheric emissions observed by ROSA and HARDcam appear to occupy the inner, and apparently cooler and lower, quarter of the loop. We compare the intensity fluctuations of two points within the structure. From alignment with SDO/HMI images we identify a point "A" near the loop structure, which sits directly above a bipolar magnetic feature in the photosphere. Point "B" is characteristic of locations within the loops that are visible in both the ROSA/HARDcam and the SDO/AIA data. The intensity traces for point A are quiet during the first part of the data string. At time ~ 19 min they suddenly begin a series of impulsive brightenings. In the 171 Å and 193 Å coronal lines the brightenings are localized impulses in time, but in the transition region line at 304 Å they are more extended in time. The intensity traces in the 304 Å line for point B shows a quasi-periodic signal that changes properties at about 19 min. The wavelet power spectra are characterized by two periodicities. A 6.7 min period extends from the beginning of the series until about 25 minutes, and another signal with period ~3 min starts at about 20 min. The 193 Å power spectrum has a characteristic period of 5 min, before the 20 min transition and a 2.5 min periodicity afterward. In the case of HARDcam Hα data a localized 4 min periodicity can be found until about 7 min, followed by a quiet regime. After ~20 min a 2.3 min periodicity appears. Interestingly a coronal loop visible in the 94 Å line that is centrally located in the AR, running from the leading umbra to the following polarity, at about time 20 min undergoes a strong brightening beginning at the same moment all along 15 Mm of its length. The fact that these different signals all experience a clear-cut change at time about 20 min suggests an underlying organizing mechanism. Given that point A has a direct connection to the photospheric magnetic bipole, we conjecture that the whole extended structure is connected in a complex manner to the underlying magnetic field. The periodicities in these features may favor the wave nature rather than upflows and interpretations will be discussed.
Resumo:
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 휃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.
Resumo:
We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) and Advanced Camera for Surveys Wide Field Channel F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M_{r^' }}=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Hα absorption minimum of -11 700 km s-1 (at 1 d post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (
Resumo:
This paper investigates camera control for capturing bottle cap target images in the fault-detection system of an industrial production line. The main purpose is to identify the targeted bottle caps accurately in real time from the images. This is achieved by combining iterative learning control and Kalman filtering to reduce the effect of various disturbances introduced into the detection system. A mathematical model, together with a physical simulation platform is established based on the actual production requirements, and the convergence properties of the model are analyzed. It is shown that the proposed method enables accurate real-time control of the camera, and further, the gain range of the learning rule is also obtained. The numerical simulation and experimental results confirm that the proposed method can not only reduce the effect of repeatable disturbances but also non-repeatable ones.
Resumo:
Camera traps are used to estimate densities or abundances using capture-recapture and, more recently, random encounter models (REMs). We deploy REMs to describe an invasive-native species replacement process, and to demonstrate their wider application beyond abundance estimation. The Irish hare Lepus timidus hibernicus is a high priority endemic of conservation concern. It is threatened by an expanding population of non-native, European hares L. europaeus, an invasive species of global importance. Camera traps were deployed in thirteen 1 km squares, wherein the ratio of invader to native densities were corroborated by night-driven line transect distance sampling throughout the study area of 1652 km2. Spatial patterns of invasive and native densities between the invader’s core and peripheral ranges, and native allopatry, were comparable between methods. Native densities in the peripheral range were comparable to those in native allopatry using REM, or marginally depressed using Distance Sampling. Numbers of the invader were substantially higher than the native in the core range, irrespective of method, with a 5:1 invader-to-native ratio indicating species replacement. We also describe a post hoc optimization protocol for REM which will inform subsequent (re-)surveys, allowing survey effort (camera hours) to be reduced by up to 57% without compromising the width of confidence intervals associated with density estimates. This approach will form the basis of a more cost-effective means of surveillance and monitoring for both the endemic and invasive species. The European hare undoubtedly represents a significant threat to the endemic Irish hare.
Resumo:
In 1858, a volume entitled Midnight Scenes and Social Photographs – being sketches of life in the streets, wynds and dens of the city of Glasgow was published under the pseudonym of ‘Shadow’ by Alexander Brown, a Glaswegian flâneur and reformer. Its frontispiece is an etching which depicts a theatre-like proscenium arch whose curtains have been withdrawn to reveal to the audience all the poverty, destitution and disorder that one was likely to find after dark in the insalubrious quarters of the city. At the extreme left-hand side, partly obscured by the curtain a silhouetted figure stands behind an unwieldy camera perched on a tripod. Distinctly unaffected by the mêlée, an arm is calmly raised and a finger precisely arched in the moment before the shutter is clicked and the scene committed to record. The volume, however, relies exclusively on textual descriptions to evoke the underside of the city and contains no photographs at all. Instead, the use of the word photograph in the title can be understood as a metaphor for detached scientific objectivity, a quality much celebrated by nineteenth-century reformers and investigators of social ills. As it happened, a decade after Shadow disappeared into the labyrinthine back-lands of Old Town Glasgow, he was followed there by a real photographer. In 1868, Thomas Annan was commissioned by the City Improvements Trust to take photographs of the Old Town in its last moments of existence before it was pulled down under a series of legislative acts. But perhaps paradoxically, given Shadow’s faith in the analytical properties of photography, Annan’s work seems to refute much of the material contained in Midnight Scenes and other similar tracts. Instead of the dens, shebeens, labyrinths and rowdy crowds described by Shadow, Annan’s depictions of the Old Town convey a static, calm environment, one which is often sparsely inhabited by a curious but apparently orderly population.
Taking account of the sensational tendencies of many reformists’ texts, this paper investigates the discrepancies between the two representations, focussing in particular on the constraints which operated on Annan during his commission. It argues that Annan’s compositions – which became very influential on other 19th century photographers of everyday life such as John Thomson or Jacob Riis – far from being dispassionate analytical works, emerged as a result of a matrix of factors which included: photographic and artistic precedents; Annan’s own predilections as a photographer; technological limitations; the nature of the commission from the City Improvements Trust and political climate in which it was given; the medieval urban fabric in which he had to operate; and, perhaps, most importantly, the identity of the Old Towns inhabitants themselves.