Accurate image capturing control of bottle caps based on iterative learning control and Kalman filtering


Autoria(s): Zhou, Wenju; Fei, Minrui; Li, Kang; Wang, Haikuan; Bai, Haoliang
Data(s)

01/06/2014

Resumo

This paper investigates camera control for capturing bottle cap target images in the fault-detection system of an industrial production line. The main purpose is to identify the targeted bottle caps accurately in real time from the images. This is achieved by combining iterative learning control and Kalman filtering to reduce the effect of various disturbances introduced into the detection system. A mathematical model, together with a physical simulation platform is established based on the actual production requirements, and the convergence properties of the model are analyzed. It is shown that the proposed method enables accurate real-time control of the camera, and further, the gain range of the learning rule is also obtained. The numerical simulation and experimental results confirm that the proposed method can not only reduce the effect of repeatable disturbances but also non-repeatable ones.

Identificador

http://pure.qub.ac.uk/portal/en/publications/accurate-image-capturing-control-of-bottle-caps-based-on-iterative-learning-control-and-kalman-filtering(796e75c8-9151-4f71-9ed5-35a8b173abef).html

http://dx.doi.org/10.1177/0142331213507077

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Zhou , W , Fei , M , Li , K , Wang , H & Bai , H 2014 , ' Accurate image capturing control of bottle caps based on iterative learning control and Kalman filtering ' Transactions of the Institute of Measurement and Control , vol 36 , no. 4 , pp. 465-477 . DOI: 10.1177/0142331213507077

Tipo

article