924 resultados para calcium sulphate
Resumo:
Our aim was to assess the effects of magnesium sulphate given by iontophoresis on the viability of random skin flaps in rats. Endovenous magnesium sulphate is used to treat pre-eclampsia and diseases of blood vessels. Iontophoresis is an electrotherapeutic method which has shown satisfactory results in controlling ischaemia within the boundaries of the area in which it was given. Forty-five adult male Wistar rats, weighing 300 to 440 g were randomly divided into three groups of 15 animals each: random skin flap (control); random skin flap treated with magnesium sulphate without electrical stimulation; and random skin flap treated with magnesium sulphate with electrical stimulation of 4 mA for 20 minutes. The treatments were applied immediately after the operation and repeated on the following two days. The percentage of necrotic area was measured on the seventh postoperative day using a paper template. For each group, the mean percentage of flap necrosis was as follows: control, 46%; magnesium sulphate without electrical stimulation, 34%; and magnesium sulphate with electrical stimulation, 42%. There was no significant difference among the groups (p=0.18). Magnesium sulphate given by iontophoresis does not increase the viability of random skin flaps in rats.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The main goal of the present study was to evaluate the effect of different setting accelerator agents on the developed microstructures of calcium phosphate cements (CPCs) by employing the impedance spectroscopy (IS) technique. Six compositions of CPCs were prepared from mixtures of commercial dicalcium phosphate anhydrous (DCPA) and synthesized tetracalcium phosphate (TTCP) as the solid phases. Two TTCP/DCPA molar ratios (1/1 and 1/2) and three liquid phases (aqueous solutions of Na(2)HPO(4), tartaric acid (TA) and oxalic acid (OA), 5% volume fraction) were employed. Initial (I) and final (F) setting times of the cement pastes were determined with Gillmore needles (ASTM standard C266-99). The hardened samples were characterized by X-ray powder diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and apparent density measurements. The IS technique was employed as a non-destructive tool to obtain information related to porosity, tortuosity and homogeneity of the cement microstructures. The formulation prepared from a TTCP/DCPA equimolar mixture and OA as the liquid phase presented the shortest I and F (12 and 20 min, respectively) in comparison to the other studied systems. XRD analyses revealed the formation of low-crystallinity hydroxyapatite (HA) (as the main phase) as well as the presence of little amounts of unreacted DCPA and TTCP after 24 h hardening in 100% relative humidity. This was related to the proposed mechanisms of dissolution of the reactants. The bands observed by FTIR allowed identifying the presence of calcium tartrate and calcium oxalate in the samples prepared from TA and OA, in addition to the characteristic bands of HA. High degree of entanglement of the formed crystals was observed by SEM in samples containing OA. SEM images were also correlated to the apparent densities of the hardened cements. Changes in porosity, tortuosity and microstructural homogeneity were determined in all samples, from IS results, when the TTCP/DCPA ratio was changed from 1/1 to 1/2. The cement formulated from an equimolar mixture of TTCP/DCPA and OA as the liquid phase presented setting times, degree of conversion to low-crystallinity HA and microstructural features suitable to be used as potential bone cement in clinical applications. The IS technique was shown to be a very sensitive and non-destructive tool to relate the paste composition to the developed microstructures. This approach could be very useful to develop calcium phosphate bone cements for specific clinical demands.
Resumo:
The addition of calcium chloride eletrolyte to sodium polyphosphate solutions lead to Calcium polyphosphate coacervates. The effects of a thermal treatment were investigated with the objective to increase the relative stability of the obtained material. Thermogravimetry analysis indicates that coacervates became less hydrophilic and more thermally stable after the thermal treatment. Crystallization was identified through differential scanning calorimetry and X-ray diffraction. Morphological changes were observed after the thermal treatment by scanning electron microscopy. N-2 adsorption-desorption isotherms suggest that both materials, thermally treated or not, display type IV isotherms, low superficial area and mesoporous structure. Stability experiments in solutions at different pH values show that the thermally treated calcium polyphosphate is relatively more stable than the non-treated coacervate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mineral trioxide aggregate (MTA) is a powder aggregate containing mineral oxides with a good biological action and may facilitate the regeneration of the periodontal ligament and formation of bone. Calcium hydroxide demonstrates antibacterial properties, enhances tissue dissolution, and induces bone formation. The objective of this study was to evaluate the MTA in the bone healing process and verify if the calcium hydroxide P.A. can improve and accelerate this process. It was used forty rnale Wistar rats, which were divided into two groups, considering or not the use of calcium hydroxide P.A. solution before treatment. Thus, each one of these groups was divided in four groups with five animals each, according to the treatment and the defect filled by: animal's coagulum, monoolein gel, MTA in aqueous solution, and MTA combined with monoolein gel. After 10 days, the animals were perfused and the right hemimandibles removed for histological analysis. Statistical analysis of the data showed significant difference between all analyzed groups when it was made comparisons using or not calcium hydroxide P.A. (p < 0.0001). There was found statistical difference between the groups that was inserted or not MTA, independently the calcium hydroxide application (p < 0.05). Results showed that the MTA used was able to induce bone regeneration and had its action optimized when combined to calcium hydroxide P.A. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Salt stress decreases the osmotic potential of soil solution causing water stress, causing toxic effects in the plants resulting in injuries on the metabolism and nutritional disorders, thus compromising the plant growth, resulting in lower production. The calcium silicate and magnesium can perform the same function as limestone, besides providing silicon to plants, may also contribute to the resistance of plants to salt stress. Thus, the objective of this study was to evaluate the effect of calcium and magnesium silicate on the growth of the castor oil plant BRS Energia cultivated under saline conditions. This study evaluated plant height, stem diameter, number of leaves, leaf area, dry weight of shoot and root, and soil chemical characteristics. There was no interaction between factors of salinity level and of silicate level regarding the evaluated variables. There was a direct relationship between salinity levels and plant growth in height and stem diameter. The K concentration in soil were affected by salinity levels.
Resumo:
The purpose of this study was to analyse the apical leakage in teeth filled by the lateral condensation technique following medication with calcium hydroxide. One hundred and twenty extracted human teeth were biomechanically prepared by using exclusively reaming motion with files up to #40. Half of the teeth received a calcium hydroxide dressing for 3 days. The medication was removed by irrigation and reaming motion with files #40 up to #70. The teeth were divided in 6 experimental groups, according to the dimension of the utilized instrument. The root canals were filled and posteriorly the teeth were placed into a 2% methylene blue dye solution inside a flask, which was attached to a vacuum pump. Leakage was measured linearly, and the results showed significantly (p<0.01) less leakage in the experimental groups that received calcium hydroxide dressings than in the control groups. The results persisted even after the removal of 300 micrometers of dentin from the root canal dentinal walls.
Resumo:
The purpose of this study was to investigate long-term pH changes in cavities prepared in root surface dentin of extracted teeth after obturation of the root canal with gutta-percha and a variety of sealers containing calcium hydroxide. After cleaning and shaping, root canals in 50 recently extracted, human single-rooted teeth were divided into five groups. Each of four groups was obturated with gutta-percha and either Sealapex, Sealer 26, Apexit, or CRCS, all of which contain calcium hydroxide. The remaining group served as the control and was not obturated with gutta-percha or sealer. Cavities were prepared in the facial surface of the roots in the cervical and middle regions. The pH was measured in these dentinal cavities at the initiation of the experiment, and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days after obturation. Results indicate that the pH at the surface of the root does not become alkaline when calcium hydroxide cements are used as root canal sealers. Regardless of the sealer used, the observed pattern of pH change was not different from that seen in the control group of roots that were not treated with sealer. It is concluded that calcium hydroxide-containing cements, although suitable for use as root canal sealants, do not produce an alkaline pH at the root surface. If such a pH change is related to treatment of root resorption, these sealants do not contribute to this treatment. Copyright © 1996 by The American Association of Endodontists.
Resumo:
The purpose of this study was to determine the pH, after defined periods of time, in cavities prepared in the facial surface of the cervical, middle, and apical regions of roots obturated with calcium hydroxide pastes. Root canal instrumentation was performed on 40 recently extracted, single-rooted human teeth. Cavities 1.5 mm in diameter and 0.75 mm in depth were prepared in the cervical, middle, and apical regions of the facial surface of each root. Teeth were randomly divided into four groups. One group was left unobturated and served as a control. The three remaining groups were obturated with either aqueous calcium hydroxide, calcium hydroxide mixed with camphorated monochlorophenol, or Pulpdent pastes. Access cavities and apical foramina were closed with Cavit. Each tooth was stored individually in a vial containing unbuffered isotonic saline. pH at the surface was measured in the cervical, middle, and apical cavities at 0 and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days. Results indicate that hydroxyl ions derived from calcium hydroxide pastes diffused through root dentin at all regions over the experimental period of 120 days. The pattern of pH change at the tooth surface was similar in all regions of the root, regardless of the type of calcium hydroxide paste used. This was a rapid rise in pH from a control value of pH 7.6, to greater than pH 9.5 by 3 days, followed by a small decline to pH 9.0 over the next 18 days, before finally rising and remaining at, or above pH 10.0 for the remainder of the experimental period. Pulpdent paste in the apical region was the only exception in this pattern, producing a pH rise nearly one full unit below the other pastes, pH 9.3. These results indicate that, for all pastes tested, a high pH is maintained at the root surface for at least 120 days. Copyright © 1996 by The American Association of Endodontists.