970 resultados para biomechanics
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Being the hydrotherapy a treatment in water of great importance for children and adults with motor disability, providing safety and comfort is a very important task that is difficult to health professional without the aid of some specialized equipment. Generally imported devices are used for such purposes, these highly complex apparatus have a high cost and limit the patient's movement in water and exercise possibilities in some cases. In this work a solution will be presented to replace such equipment, using catalogs and computer modeling a prototype will be studied and new equipment will be developed to assist entry into the pool and it would also allow mobility to the patient in an aqueous medium. This safely mobility in the water increase the possibilities of exercises and the accessories founded in commercial catalogs make this project feasible from an economic aspect
Resumo:
This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Being the hydrotherapy a treatment in water of great importance for children and adults with motor disability, providing safety and comfort is a very important task that is difficult to health professional without the aid of some specialized equipment. Generally imported devices are used for such purposes, these highly complex apparatus have a high cost and limit the patient's movement in water and exercise possibilities in some cases. In this work a solution will be presented to replace such equipment, using catalogs and computer modeling a prototype will be studied and new equipment will be developed to assist entry into the pool and it would also allow mobility to the patient in an aqueous medium. This safely mobility in the water increase the possibilities of exercises and the accessories founded in commercial catalogs make this project feasible from an economic aspect
Resumo:
This paper presents a proposal to redesign a physical therapy device for patients with quadriplegia, called parapodium. With the help of the Association of Parents and Exceptional Friends of Guaratinguetá, it was possible to know the currently used device and from this it was conceived changes, allowing the increase of freedom of its central portion, in the down and across positions with mechanical drive . This adaptation is to introduce improvements in the routine of physical therapy professionals and reduce ergonomic problems resulting from repetitive strain during the transfer of patients to the parapodium. In addition to providing greater security for patients who require the use of this equipment. The proposed device comprises: wheel, gearbox and brake systems used for actuation, allowing a degree of turning of the rear post, along an axis which is fixed to the gearbox and the rear structure that permits posterior movement. The mechanism allows the rear post rotate from 0 ° to 90 °. The estimated cost to make the proposal is lower than the marketed parapodiuns, reaching the device's functional expectations
Resumo:
Objective: To analyze the shear forces on the vertebral body L4 when submitted to a compression force by means of transmission photoelasticity. Methods: Twelve photoelastic models were divided into three groups, with four models per group, according to the positioning of the sagittal section vertebrae L4-L5 (sections A, B and C). The simulation was performed using a 15N compression force, and the fringe orders were evaluated in the vertebral body L4 by the Tardy compensation method. Results: Photoelastic analysis showed, in general, a homogeneous distribution in the vertebral bodies. The shear forces were higher in section C than B, and higher in B than A. Conclusion: The posterior area of L4, mainly in section C, showed higher shear concentrations, corresponding to a more susceptible area for bone fracture and spondylolisthesis. Economic and Decision Analyses Development of an Economic or Decision Model. Level I
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 +/- 5% km . h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.
Resumo:
Twelve participants ran (9 km . h(-1)) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P <= 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P <= 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P <= 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P <= 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.
Resumo:
The joint torque is an important variable related to children with cerebral palsy. The present study analyzed kinetic parameters during elbow flexion and extension movements in healthy and cerebral palsy children. Ten healthy and 10 cerebral palsy children participated of the study. An isokinetic dynamometer was used to measure the elbow mean peak torque, mean angle peak torque, coefficient of variation and acceleration during flexion and extension movements at different angular speeds. The mean peak torque on extension movement in healthy children group was significant higher compared to the cerebral palsy group. The coefficient of variation on both flexion and extension movements was significantly higher in cerebral palsy group. However there were significantly difference on both groups compared the lowest and highest velocities. Although the results showed no difference in flexor peak torque, the acceleration is significantly lower in lowest and highest angular velocity.
Resumo:
This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.
Resumo:
The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions.