821 resultados para bidirectional associative memory neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The merit of the Karhunen-Loève transform is well known. Since its basis is the eigenvector set of the covariance matrix, a statistical, not functional, representation of the variance in pattern ensembles is generated. By using the Karhunen-Loève transform coefficients as a natural feature representation of a character image, the eigenvector set can be regarded as an feature extractor for a classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several papers on pruning methods in the artificial neural networks area. However, with rare exceptions, none of them presents an appropriate statistical evaluation of such methods. In this article, we proved statistically the ability of some methods to reduce the number of neurons of the hidden layer of a multilayer perceptron neural network (MLP), and to maintain the same landing of classification error of the initial net. They are evaluated seven pruning methods. The experimental investigation was accomplished on five groups of generated data and in two groups of real data. Three variables were accompanied in the study: apparent classification error rate in the test group (REA); number of hidden neurons, obtained after the application of the pruning method; and number of training/retraining epochs, to evaluate the computational effort. The non-parametric Friedman's test was used to do the statistical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several systems are currently tested in order to obtain a feasible and safe method for automation and control of grinding process. This work aims to predict the surface roughness of the parts of SAE 1020 steel ground in a surface grinding machine. Acoustic emission and electrical power signals were acquired by a commercial data acquisition system. The former from a fixed sensor placed near the workpiece and the latter from the electric induction motor that drives the grinding wheel. Both signals were digitally processed through known statistics, which with the depth of cut composed three data sets implemented to the artificial neural networks. The neural network through its mathematical logical system interpreted the signals and successful predicted the workpiece roughness. The results from the neural networks were compared to the roughness values taken from the worpieces, showing high efficiency and applicability on monitoring and controlling the grinding process. Also, a comparison among the three data sets was carried out.