933 resultados para algebraic structures of integrable models
Resumo:
The aim of this work is to compare two families of mathematical models for their respective capability to capture the statistical properties of real electricity spot market time series. The first model family is ARMA-GARCH models and the second model family is mean-reverting Ornstein-Uhlenbeck models. These two models have been applied to two price series of Nordic Nord Pool spot market for electricity namely to the System prices and to the DenmarkW prices. The parameters of both models were calibrated from the real time series. After carrying out simulation with optimal models from both families we conclude that neither ARMA-GARCH models, nor conventional mean-reverting Ornstein-Uhlenbeck models, even when calibrated optimally with real electricity spot market price or return series, capture the statistical characteristics of the real series. But in the case of less spiky behavior (System prices), the mean-reverting Ornstein-Uhlenbeck model could be seen to partially succeeded in this task.
Resumo:
Asian rust of soybean [Glycine max (L.) Merril] is one of the most important fungal diseases of this crop worldwide. The recent introduction of Phakopsora pachyrhizi Syd. & P. Syd in the Americas represents a major threat to soybean production in the main growing regions, and significant losses have already been reported. P. pachyrhizi is extremely aggressive under favorable weather conditions, causing rapid plant defoliation. Epidemiological studies, under both controlled and natural environmental conditions, have been done for several decades with the aim of elucidating factors that affect the disease cycle as a basis for disease modeling. The recent spread of Asian soybean rust to major production regions in the world has promoted new development, testing and application of mathematical models to assess the risk and predict the disease. These efforts have included the integration of new data, epidemiological knowledge, statistical methods, and advances in computer simulation to develop models and systems with different spatial and temporal scales, objectives and audience. In this review, we present a comprehensive discussion on the models and systems that have been tested to predict and assess the risk of Asian soybean rust. Limitations, uncertainties and challenges for modelers are also discussed.
Resumo:
The purpose of this dissertation is to examine the dynamics of the socio-technical system in the field of ageing. The study stems from the notion that the ageing of the population as a powerful megatrend has wide societal effects, and is not just a matter for the social and health sector. The central topic in the study is change: not only the age structures and structures of society are changing, but also at the same time there is constant development, for instance, in technologies, infrastructures and cultural perceptions. The changing concept of innovation has widened the understanding of innovations related to ageing from medical and assistive technological innovations to service and social innovations, as well as systemic innovations at different levels, which means the intertwined and co-evolutionary change in technologies, structures, services and thinking models. By the same token, the perceptions of older people and old age are becoming more multi-faceted: old age is no longer equated to illnesses and decline, but visions of active ageing and a third age have emerged, which are framed by choices, opportunities, resources and consumption in later life. The research task in this study is to open up the processes and mechanisms of change in the field of ageing, which are studied as a complex, multi-level and interrelated socio-technical system. The question is about co-effective elements consisting of macro-level landscape changes, the existing socio-technical regime (the rule system, practices and structures) and bottom-up niche-innovations. Societal transitions do not account for the things inside the regime alone, or for the long-term changes in the landscape, nor for the radical innovations, but for the interplay between all these levels. The research problem is studied through five research articles, which offer micro-level case studies to macro-level phenomenon. Each of the articles focus on different aspects related to ageing and change, and utilise various datasets. The framework of this study leans on the studies of socio-technical systems and multi-level perspective on transitions mainly developed by Frank Geels. Essential factors in transition from one socio-technological regime to another are the co-evolutionary processes between landscape changes, regime level and experimental niches. Landscape level changes, like the ageing of the population, destabilise the regime in the forms of coming pressures. This destabilization offers windows for opportunity to niche-innovations outside or at fringe of the regime, which, through their breakthrough, accelerate the transition process. However, the change is not easy because of various kinds of lock-ins and inertia, which tend to maintain the stability of the regime. In this dissertation, a constructionist approach of society is applied leaning mainly to the ideas of Anthony Giddens’ theory of structuration, with the dual nature of structures. The change is taking place in the interplay between actors and structures: structures shape people’s practices, but at the same time these practices constitute and reproduce social systems. Technology and other material aspects, as part of socio-technical systems, and the use of them, also take part in the structuration process. The findings of the study point out that co-evolutionary and co-effective relationships between economic, cultural, technological and institutional fields, as well as relationships between landscape changes, changes in the local and regime-level practices and rule systems, are a very complex and multi-level dynamic socio-technical phenomenon. At the landscape level of ageing, which creates the pressures and triggers to the regime change, there are three remarkable megatrends: demographic change, changes in the global economy and the development of technologies. These exert pressures to the socio-technical regime, which as a rule system is experiencing changes in the form of new markets and consumer habits, new ways of perceiving ageing, new models of organising the health care and other services and as new ways of considering innovation and innovativeness. There are also inner dynamics in the relationships between these aspects within the regime. These are interrelated and coconstructed: the prevailing perceptions of ageing and innovation, for instance, reflect the ageing policies, innovation policies, societal structures, organising models, technology and scientific discussion, and vice versa. Technology is part of the inner dynamics of the sociotechnological regime. Physical properties of the artefacts set limitations and opportunities with regard to their functions and uses. The use of and discussion about technology, contributes producing and reproducing the perceptions of old age. For societal transition, micro-level changes are also needed, in form of niche-innovations, for instance new services, organisational models or new technologies, Regimes, as stabilitystriven systems, tend to generate incremental innovations, but radically new innovations are generated in experimental niches protected from ‘normal’ market selection. The windows of opportunity for radical novelties may be opened if the circumstances are favourable for instance by tensions in the socio-technical regime affected by landscape level changes. This dissertation indicates that a change is taking place, firstly, in the dynamic interactionbetween levels, as a result of purposive action and governance to some extent. Breaking the inertia and using the window of opportunity for change and innovation offered by dynamics between levels, presupposes the actors’ special capabilities and actions such as dynamic capabilities and distance management. Secondly, the change is taking place the socio-technological negotiations inside the regime: interaction between technological and social, which is embodied in the use of technology. The use of technology includes small-level contextual scripts that also participate in forming broader societal scripts (for instance defining old age at the society level), which in their turn affect the formation of policies for innovation and ageing. Thirdly, the change is taking place by the means of active formation of the multi-actor innovation networks, where the role of distance management is crucial to facilitate the communication between actors coming from different backgrounds as well as to help the niches born outside the regime to utilise the window of opportunity offered by regime destabilisation. This dissertation has both theoretical and practical contributions. This study participates in the discussion of action-oriented view on transition by opening up of the socio-technological, coevolutionary processes of the multi-faceted phenomenon of ageing, which has lacked systematic analyses. The focus of this study, however, is not on the large-scale coordination and governance, but rather on opening up the incremental elements and structuration processes, which contribute to the transition little by little, and which can be affected to. This increases the practical importance of this dissertation, by highlighting the importance of very tiny, everyday elements in the change processes in the long run.
Resumo:
In São Paulo State, mainly in rural areas, the utilization of wooden poles is observed for different purposes. In this context, wood in contact with the ground presents faster deterioration, which is generally associated to environmental factors and, especially to the presence of fungi and insects. With the use of mathematical models, the useful life of wooden structures can be predicted by obtaining "climatic indexes" to indicate, comparatively among the areas studied, which have more or less tendency to fungi and insects attacks. In this work, by using climatological data of several cities at São Paulo State, a simplified mathematical model was obtained to measure the aggressiveness of the wood in contact with the soil.
Resumo:
The present study was conducted at the Department of Rural Engineering and the Department of Animal Morphology and Physiology of FCAV/Unesp, Jaboticabal, SP, Brazil. The objective was to verify the influence of roof slope, exposure and roofing material on the internal temperature of reduced models of animal production facilities. For the development of the research, 48 reduced and dissemble models with dimensions 1.00 × 1.00 × 0.50 m were used. The roof was shed-type, and the models faced to the North or South directions, with 24 models for each side of exposure. Ceramic, galvanized-steel and fibro tiles were used to build the roofs. Slopes varied between 20, 30, 40 and 50% for the ceramic tile and 10, 30, 40 and 50% for the other two. Inside the models, temperature readings were performed at every hour, for 12 months. The results were evaluated in a general linear model in a nested 3 × 4 × 2 factorial arrangement, in which the effects of roofing material and exposure were nested on the factor Slope. Means were compared by the Tukey test at 5% of probability. After analyzing the data, we observed that with the increase in the slope and exposure to the South, there was a drop in the internal temperature within the model at the geographic coordinates of Jaboticabal city (SP/Brazil).
Resumo:
Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
In the field of anxiety research, animal models are used as screening tools in the search for compounds with therapeutic potential and as simulations for research on mechanisms underlying emotional behaviour. However, a solely pharmacological approach to the validation of such tests has resulted in distinct problems with their applicability to systems other than those involving the benzodiazepine/GABAA receptor complex. In this context, recent developments in our understanding of mammalian defensive behaviour have not only prompted the development of new models but also attempts to refine existing ones. The present review focuses on the application of ethological techniques to one of the most widely used animal models of anxiety, the elevated plus-maze paradigm. This fresh approach to an established test has revealed a hitherto unrecognized multidimensionality to plus-maze behaviour and, as it yields comprehensive behavioural profiles, has many advantages over conventional methodology. This assertion is supported by reference to recent work on the effects of diverse manipulations including psychosocial stress, benzodiazepines, GABA receptor ligands, neurosteroids, 5-HT1A receptor ligands, and panicolytic/panicogenic agents. On the basis of this review, it is suggested that other models of anxiety may well benefit from greater attention to behavioural detail
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
The purpose of this Master’s thesis was to study the business model development in Finnish newspaper industry during the next then years through scenario planning. The objective was to see how will the business models develop amidst the many changes in the industry, what factors are affecting the change, what are the implications of these changes for the players in the industry and how should the Finnish newspaper companies evolve in order to succeed in the future. In this thesis the business model change is studied based on all the elements of business models, as it was discovered that the industry is too often focusing on changes in only few of those elements and a more broader view can provide valuable information for the companies. The results revealed that the industry is affected by many changes during the next ten years. Scenario planning provides a good tool for analyzing this change and for developing valuable options for businesses. After conducting series of interviews and discovering forces affecting the change, four different scenarios were developed centered on the role that newspaper will take and the level at which they are providing the content in the future. These scenarios indicated that there are varieties of options in the way the business models may develop and that companies should start making decisions proactively in order to succeed. As the business model elements are interdepended, changes made in the other elements will affect the whole model, making these decisions about the role and level of content important for the companies. In the future, it is likely that the Finnish newspaper industry will include many different kinds of business models, some of which can be drastically different from the current ones and some of which can still be similar, but take better into account the new kind of media environment.
Resumo:
Immunoglobulin E (IgE) and mast cells are believed to play important roles in allergic inflammation. However, their contributions to the pathogenesis of human asthma have not been clearly established. Significant progress has been made recently in our understanding of airway inflammation and airway hyperresponsiveness through studies of murine models of asthma and genetically engineered mice. Some of the studies have provided significant insights into the role of IgE and mast cells in the allergic airway response. In these models mice are immunized systemically with soluble protein antigens and then receive an antigen challenge through the airways. Bronchoalveolar lavage fluid from mice with allergic airway inflammation contains significant amounts of IgE. The IgE can capture the antigen presented to the airways and the immune complexes so formed can augment allergic airway response in a high-affinity IgE receptor (FcepsilonRI)-dependent manner. Previously, there were conflicting reports regarding the role of mast cells in murine models of asthma, based on studies of mast cell-deficient mice. More recent studies have suggested that the extent to which mast cells contribute to murine models of asthma depends on the experimental conditions employed to generate the airway response. This conclusion was further supported by studies using FcepsilonRI-deficient mice. Therefore, IgE-dependent activation of mast cells plays an important role in the development of allergic airway inflammation and airway hyperresponsiveness in mice under specific conditions. The murine models used should be of value for testing inhibitors of IgE or mast cells for the development of therapeutic agents for human asthma.
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.