969 resultados para adaptive behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes the tensile flow and work hardening behavior of a high strength 7010 aluminum alloy by constitutive relations. The alloy has been hot rolled by three different cross-rolling schedules. Room temperature tensile properties have been evaluated as a function of tensile axis orientation in the as-hot rolled as well as peak aged conditions. It is found that both the Ludwigson and a generalized Voce-Bergstrom relation adequately describe the tensile flow behavior of the present alloy in all conditions compared to the Hollomon relation. The variation in the Ludwigson fitting parameter could be correlated well with the microstructural features and anisotropic contribution of strengthening precipitates in the as-rolled and peak aged conditions, respectively. The hardening rate and the saturation stress of the first Voce-Bergstrom parameter, on the other hand, depend mainly on the crystallographic texture of the specimens. It is further shown that for the peak aged specimens the uniform elongation (epsilon(u)) derived from the Ludwigson relation matches well with the measured epsilon(u) irrespective of processing and loading directions. However, the Ludwigson fit overestimates the epsilon(u) in case of the as-rolled specimens. The Hollomon fit, on the other hand, predicts well the measured epsilon(u), of the as-rolled specimens but severely underestimates the epsilon(u), for the peak aged specimens. Contrarily, both the relations significantly overestimate the UTS of the as-rolled and the peak aged specimens. The Voce-Bergstrom parameters define the slope of e Theta-sigma plots in the stage-III regime when the specimens show a classical linear decrease in hardening rate in stage-III. Further analysis of work hardening behavior throws some light on the effect of texture on the dislocation storage and dynamic recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study on the postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratios is presented in this article. The influence of different parameters such as density, amplitude of cyclic shear stress, and drainage conditions on the postliquefaction undrained response of sand-silt mixtures has been investigated, in addition to the effect of fines content. The results showed that the limiting silt content plays a vital role in the strength of the soil under both cyclic and monotonic shear loading. Both the liquefaction resistance and postliquefaction shear strength of the soils are found to decrease with an increase in the fines content until the limiting silt content is reached. However, further increase in the silt content beyond the limiting silt content increases the liquefaction resistance as well as the postliquefaction shear strength of the soils. It is also observed that these variations on the liquefaction and postliquefaction resistance of soils are closely related to the variations in relative density. (C) 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te75Ge10 thin film devices reveal the existence of two distinct, stable low-resistance, SET states, achieved by varying the electrical input to the device. The multiple resistance levels can be attributed to multi-stage crystallization, as observed from temperature dependant resistance studies. The devices are tested for their ability to be RESET with minimal resistance degradation; further, they exhibit a minimal drift in the SET resistance value even after several months of switching. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) in their cellular like micro-structure have presented an excellent mechanical energy absorption capacity. Although, several efforts have been progressed to modify the CNT structure for further enhancing their energy absorption capacity but yet no report has revealed the effect of magnetic field on the mechanical behavior of as-grown CNT mat that contains magnetic iron nanoparticles in the form of decorated nanoparticles on the surface or filled inside core of the CNT. We report a significant impact of the presence of magnetic content that modifies the mechanical behavior of the entangled CNT mat in the presence of an external magnetic field. The energy absorption capacity doubles when magnetic field was applied in the radial direction of the CNT mat under uniaxial compression. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims at seeking the universal behavior of propagation rate variation with air superficial velocity (V-s) in a packed bed of a range of biomass particles in reverse downdraft mode while also resolving the differing and conflicting explanations in the literature. Toward this, measurements are made of exit gas composition, gas phase and condensed phase surface temperature (T-g and T-s), and reaction zone thickness for a number of biomass with a range of properties. Based on these data, two regimes are identified: gasificationvolatile oxidation accompanied by char reduction reactions up to 16 +/- 1cm/s of V-s and above this, and char oxidationsimultaneous char oxidation and gas phase combustion. In the gasification regime, the measured T-s is less than T-g; a surface heat balance incorporating a diffusion controlled model for flaming combustion gives and matches with the experimental results to within 5%. In the char oxidation regime, T-g and T-s are nearly equal and match with the equilibrium temperature at that equivalence ratio. Drawing from a recent study of the authors, the ash layer over the oxidizing char particle is shown to play a critical role in regulating the radiation heat transfer to fresh biomass in this regime and is shown to be crucial in explaining the observed propagation behavior. A simple model based on radiation-convection balance that tracks the temperature-time evolution of a fresh biomass particle is shown to support the universal behavior of the experimental data on reaction front propagation rate from earlier literature and the present work for biomass with ash content up to 10% and moisture fraction up to 10%. Upstream radiant heat transfer from the ash-laden hot char modulated by the air flow is shown to be the dominant feature of this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the effect of mechanical strain on the electrostrictive behavior of catalytically grown cellular structure of carbon nanotube (CNT). In the small strain regime, where the stress-strain behavior of the material is linear, application of an electric-field along the mechanical loading direction induces an instantaneous increase in the stress and causes an increase in the apparent Young's modulus. The instantaneous increase in the stress shows a cubic-polynomial dependence on the electric-field, which is attributed to the non-linear coupling of the mechanical strain and the electric-field induced polarization of the CNT. The electrostriction induced actuation becomes >100 times larger if the CNT sample is pre-deformed to a small strain. However, in the non-linear stress-strain regime, although a sharp increase in the apparent Young's modulus is observed upon application of an electric-field, no instantaneous increase in the stress occurs. This characteristic suggests that the softening due to the buckling of individual CNT compensates for any instantaneous rise in the electrostriction induced stress at the higher strains. We also present an analytical model to elucidate the experimental observations. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 3D cadmium(II) coordination polymer, Cd(C2O4)(0.5)Cl(H2O)](n) (1) has been synthesized from a mixture of CdCl2. H2O and (NH4)(2)C2O4 in a slightly acidic pH. Its molecular structure was determined by single crystal X-ray diffraction which reveals that the new polymeric structure consists of simultaneous mu(4)-oxalato, mu-aquo, and mu-chlorido bridges between the metal centers, embedded in distorted pentagonal bipyramidal geometries. On thermal analysis compound exhibits high thermal stability up to 330 degrees C. Compound 1 also exhibits strong fluorescent emission. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification pathways of Nb rich Nb-Si alloys when processed under non-equilibrium conditions require understanding. Continuing with our earlier work on alloying additions in single eutectic composition 1,2], we report a detailed characterization of the microstructures of Nb-Si binary alloys with wide composition range (10-25 at% Si). The alloys are processed using chilled copper mould suction casting. This has allowed us to correlate the evolution of microstructure and phases with different possible solidification pathways. Finally these are correlated with mechanical properties through studies on deformation using mechanical testing under indentation and compressive loads. It is shown that microstructure modification can significantly influence the plasticity of these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel space-time descriptor for region-based tracking which is very concise and efficient. The regions represented by covariance matrices within a temporal fragment, are used to estimate this space-time descriptor which we call the Eigenprofiles(EP). EP so obtained is used in estimating the Covariance Matrix of features over spatio-temporal fragments. The Second Order Statistics of spatio-temporal fragments form our target model which can be adapted for variations across the video. The model being concise also allows the use of multiple spatially overlapping fragments to represent the target. We demonstrate good tracking results on very challenging datasets, shot under insufficient illumination conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. Depending on the signal set used at the end nodes, the minimum distance of the effective constellation seen at the relay becomes zero for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: (i) the ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding called the non-removable singular fade states and (ii) the ones which occur due to the choice of the signal set and whose harmful effects can be removed called the removable singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR-1: the error events associated with the removable and nonremovable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states fall as SNR-2, thereby providing a coding gain over the case when adaptive network coding is not used. Also, it is shown that for a Rician fading channel, the error during the MA phase dominates over the error during the BC phase. Hence, adaptive network coding, which improves the performance during the MA phase provides more gain in a Rician fading scenario than in a Rayleigh fading scenario. Furthermore, it is shown that for large Rician factors, among those removable singular fade states which have the same magnitude, those which have the least absolute value of the phase - ngle alone contribute dominantly to the end-to-end SER and it is sufficient to remove the effect of only such singular fade states.