939 resultados para abstract data type
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)
Resumo:
In the last years, the use of every type of Digital Elevation Models has iimproved. The LiDAR (Light Detection and Ranging) technology, based on the scansion of the territory b airborne laser telemeters, allows the construction of digital Surface Models (DSM), in an easy way by a simple data interpolation
Resumo:
En este trabajo se describe la naturaleza y secuencia de adquisición de las preguntas interrogativas parciales en niños de habla catalana y/o castellana dentro de un marco de análisis según el cual la adquisición de las estructuras lingüísticas se construye gradualmente desde estructuras concretas hasta estructuras más abstractas. La muestra utilizada se compone de 10 niños y niñas procedentes de corpus longitudinales cuyas edades van de los 17 meses a los 3 años. El análisis se ha realizado atendiendo a la estructura sintáctica de la oración, los errores, los pronombres y adverbios interrogativos, y la tipología verbal. Los resultados muestran que la secuencia de adquisición pasa por un momento inicial caracterizado por producciones estereotipadas o fórmulas, durante el cual sólo aparecen algunas partículas interrogativas en estructuras muy concretas. Posteriormente la interrogación aparece con otros pronombres y adverbios y se diversifica a otros verbos, además, no se observan errores en la construcción sintáctica. Estos resultados suponen un hecho diferencial respecto de estudios previos en lengua inglesa
Resumo:
Los programas de inmersión lingüística han constituido y constituyen dentro del Sistema Educativo catalán la principal forma para que el alumnado de lengua familiar no-catalana aprenda una nueva lengua, el catalán, sin que, en su proceso de aprendizaje, vea mermado ni el desarrollo de su propia lengua ni su rendimiento académico. El éxito de la inmersión lingüística en las décadas anteriores ha sido frecuentemente utilizado como uno de los argumentos orientativos para justificar la política lingüística que se sigue en la escolarización de la infancia extranjera. Sin embargo, los resultados obtenidos por investigaciones recientes parece que no avalan empíricamente dicho argumento. Este artículo analiza dichos resultados y expone, a partir del Plan para la Lengua y Cohesión Social puesto en marcha por el Departamento de Educación de la Generalitat de Cataluña, cuáles son los retos que se presentan a su Sistema Educativo dentro del nuevo marco que supone el aumento de la diversidad cultural y lingüística en la actual sociedad catalana
Resumo:
Wednesday 23rd April 2014 Speaker(s): Willi Hasselbring Organiser: Leslie Carr Time: 23/04/2014 11:00-11:50 Location: B32/3077 File size: 669 Mb Abstract For good scientific practice, it is important that research results may be properly checked by reviewers and possibly repeated and extended by other researchers. This is of particular interest for "digital science" i.e. for in-silico experiments. In this talk, I'll discuss some issues of how software systems and services may contribute to good scientific practice. Particularly, I'll present our PubFlow approach to automate publication workflows for scientific data. The PubFlow workflow management system is based on established technology. We integrate institutional repository systems (based on EPrints) and world data centers (in marine science). PubFlow collects provenance data automatically via our monitoring framework Kieker. Provenance information describes the origins and the history of scientific data in its life cycle, and the process by which it arrived. Thus, provenance information is highly relevant to repeatability and trustworthiness of scientific results. In our evaluation in marine science, we collaborate with the GEOMAR Helmholtz Centre for Ocean Research Kiel.
Resumo:
Abstract This seminar is a research discussion around a very interesting problem, which may be a good basis for a WAISfest theme. A little over a year ago Professor Alan Dix came to tell us of his plans for a magnificent adventure:to walk all of the way round Wales - 1000 miles 'Alan Walks Wales'. The walk was a personal journey, but also a technological and community one, exploring the needs of the walker and the people along the way. Whilst walking he recorded his thoughts in an audio diary, took lots of photos, wrote a blog and collected data from the tech instruments he was wearing. As a result Alan has extensive quantitative data (bio-sensing and location) and qualitative data (text, images and some audio). There are challenges in analysing individual kinds of data, including merging similar data streams, entity identification, time-series and textual data mining, dealing with provenance, ontologies for paths, and journeys. There are also challenges for author and third-party annotation, linking the data-sets and visualising the merged narrative or facets of it.
Resumo:
Speaker: Dr Kieron O'Hara Organiser: Time: 04/02/2015 11:00-11:45 Location: B32/3077 Abstract In order to reap the potential societal benefits of big and broad data, it is essential to share and link personal data. However, privacy and data protection considerations mean that, to be shared, personal data must be anonymised, so that the data subject cannot be identified from the data. Anonymisation is therefore a vital tool for data sharing, but deanonymisation, or reidentification, is always possible given sufficient auxiliary information (and as the amount of data grows, both in terms of creation, and in terms of availability in the public domain, the probability of finding such auxiliary information grows). This creates issues for the management of anonymisation, which are exacerbated not only by uncertainties about the future, but also by misunderstandings about the process(es) of anonymisation. This talk discusses these issues in relation to privacy, risk management and security, reports on recent theoretical tools created by the UKAN network of statistics professionals (on which the author is one of the leads), and asks how long anonymisation can remain a useful tool, and what might replace it.
Resumo:
Abstract 1: Social Networks such as Twitter are often used for disseminating and collecting information during natural disasters. The potential for its use in Disaster Management has been acknowledged. However, more nuanced understanding of the communications that take place on social networks are required to more effectively integrate this information into the processes within disaster management. The type and value of information shared should be assessed, determining the benefits and issues, with credibility and reliability as known concerns. Mapping the tweets in relation to the modelled stages of a disaster can be a useful evaluation for determining the benefits/drawbacks of using data from social networks, such as Twitter, in disaster management.A thematic analysis of tweets’ content, language and tone during the UK Storms and Floods 2013/14 was conducted. Manual scripting was used to determine the official sequence of events, and classify the stages of the disaster into the phases of the Disaster Management Lifecycle, to produce a timeline. Twenty- five topics discussed on Twitter emerged, and three key types of tweets, based on the language and tone, were identified. The timeline represents the events of the disaster, according to the Met Office reports, classed into B. Faulkner’s Disaster Management Lifecycle framework. Context is provided when observing the analysed tweets against the timeline. This illustrates a potential basis and benefit for mapping tweets into the Disaster Management Lifecycle phases. Comparing the number of tweets submitted in each month with the timeline, suggests users tweet more as an event heightens and persists. Furthermore, users generally express greater emotion and urgency in their tweets.This paper concludes that the thematic analysis of content on social networks, such as Twitter, can be useful in gaining additional perspectives for disaster management. It demonstrates that mapping tweets into the phases of a Disaster Management Lifecycle model can have benefits in the recovery phase, not just in the response phase, to potentially improve future policies and activities. Abstract2: The current execution of privacy policies, as a mode of communicating information to users, is unsatisfactory. Social networking sites (SNS) exemplify this issue, attracting growing concerns regarding their use of personal data and its effect on user privacy. This demonstrates the need for more informative policies. However, SNS lack the incentives required to improve policies, which is exacerbated by the difficulties of creating a policy that is both concise and compliant. Standardization addresses many of these issues, providing benefits for users and SNS, although it is only possible if policies share attributes which can be standardized. This investigation used thematic analysis and cross- document structure theory, to assess the similarity of attributes between the privacy policies (as available in August 2014), of the six most frequently visited SNS globally. Using the Jaccard similarity coefficient, two types of attribute were measured; the clauses used by SNS and the coverage of forty recommendations made by the UK Information Commissioner’s Office. Analysis showed that whilst similarity in the clauses used was low, similarity in the recommendations covered was high, indicating that SNS use different clauses, but to convey similar information. The analysis also showed that low similarity in the clauses was largely due to differences in semantics, elaboration and functionality between SNS. Therefore, this paper proposes that the policies of SNS already share attributes, indicating the feasibility of standardization and five recommendations are made to begin facilitating this, based on the findings of the investigation.
Resumo:
Abstract: Big Data has been characterised as a great economic opportunity and a massive threat to privacy. Both may be correct: the same technology can indeed be used in ways that are highly beneficial and those that are ethically intolerable, maybe even simultaneously. Using examples of how Big Data might be used in education - normally referred to as "learning analytics" - the seminar will discuss possible ethical and legal frameworks for Big Data, and how these might guide the development of technologies, processes and policies that can deliver the benefits of Big Data without the nightmares. Speaker Biography: Andrew Cormack is Chief Regulatory Adviser, Jisc Technologies. He joined the company in 1999 as head of the JANET-CERT and EuroCERT incident response teams. In his current role he concentrates on the security, policy and regulatory issues around the network and services that Janet provides to its customer universities and colleges. Previously he worked for Cardiff University running web and email services, and for NERC's Shipboard Computer Group. He has degrees in Mathematics, Humanities and Law.
Resumo:
Abstract Big data nowadays is a fashionable topic, independently of what people mean when they use this term. But being big is just a matter of volume, although there is no clear agreement in the size threshold. On the other hand, it is easy to capture large amounts of data using a brute force approach. So the real goal should not be big data but to ask ourselves, for a given problem, what is the right data and how much of it is needed. For some problems this would imply big data, but for the majority of the problems much less data will and is needed. In this talk we explore the trade-offs involved and the main problems that come with big data using the Web as case study: scalability, redundancy, bias, noise, spam, and privacy. Speaker Biography Ricardo Baeza-Yates Ricardo Baeza-Yates is VP of Research for Yahoo Labs leading teams in United States, Europe and Latin America since 2006 and based in Sunnyvale, California, since August 2014. During this time he has lead the labs in Barcelona and Santiago de Chile. Between 2008 and 2012 he also oversaw the Haifa lab. He is also part time Professor at the Dept. of Information and Communication Technologies of the Universitat Pompeu Fabra, in Barcelona, Spain. During 2005 he was an ICREA research professor at the same university. Until 2004 he was Professor and before founder and Director of the Center for Web Research at the Dept. of Computing Science of the University of Chile (in leave of absence until today). He obtained a Ph.D. in CS from the University of Waterloo, Canada, in 1989. Before he obtained two masters (M.Sc. CS & M.Eng. EE) and the electronics engineer degree from the University of Chile in Santiago. He is co-author of the best-seller Modern Information Retrieval textbook, published in 1999 by Addison-Wesley with a second enlarged edition in 2011, that won the ASIST 2012 Book of the Year award. He is also co-author of the 2nd edition of the Handbook of Algorithms and Data Structures, Addison-Wesley, 1991; and co-editor of Information Retrieval: Algorithms and Data Structures, Prentice-Hall, 1992, among more than 500 other publications. From 2002 to 2004 he was elected to the board of governors of the IEEE Computer Society and in 2012 he was elected for the ACM Council. He has received the Organization of American States award for young researchers in exact sciences (1993), the Graham Medal for innovation in computing given by the University of Waterloo to distinguished ex-alumni (2007), the CLEI Latin American distinction for contributions to CS in the region (2009), and the National Award of the Chilean Association of Engineers (2010), among other distinctions. In 2003 he was the first computer scientist to be elected to the Chilean Academy of Sciences and since 2010 is a founding member of the Chilean Academy of Engineering. In 2009 he was named ACM Fellow and in 2011 IEEE Fellow.
Resumo:
Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.
Resumo:
Introducción: Las indicaciones por las cuales un paciente requiere una nefrectomía son múltiples: las neoplasias, la hidronefrosis y la exclusión funcional son las principales. En manos expertas la nefrectomía es un procedimiento seguro, especialmente porque en la actualidad el abordaje por excelencia es realizar una técnica mínimamente invasiva con conservación de nefronas. Se presenta el análisis de la experiencia en Mederi, Hospital Universitario Mayor en esta intervención. Metodología: Se realizó una serie de casos de pacientes llevados a nefrectomía entre mayo de 2008 y mayo de 2012. Se incluyeron la totalidad de los casos. Resultados: Se analizaron 72 registros, 49 mujeres y 25 hombres; 13 de ellas fueron laparoscópicas. La edad promedio fue de 58,6 años. El tiempo medio operatorio fue 169,23 minutos (118-220 minutos). El sangrado operatorio promedio fue de 680,63 ml (IC95%: 2,83-1358 ml). El tiempo de hospitalización promedio fue de 4,88 días IC95%. La mayoría de los pacientes se distribuyeron en estadios medios de la enfermedad tumoral, con poco compromiso ganglionar y metástasis; el diagnóstico histológico y estadio dominante fueron el carcinoma de células renales grado 3 de Fuhrman respectivamente. Se reportan 13 casos de compromiso de la capsula de Gerota y 11 con compromiso del hilio. Discusión: La experiencia en nefrectomía de la institución es muy positiva por el bajo número de mortalidad y complicaciones. En cuanto a la técnica, es importante promover la técnica laparoscópica
Resumo:
Este estudio de caso tiene como objetivo determinar las implicaciones del flujo de población refugiada en la implementación de la política de libre circulación de la CEDEAO; tomando como referente el flujo desde Liberia hacia Ghana generado por la Guerra Civil. Esta investigación defiende que las implicaciones pueden estar relacionadas a las dinámicas que se asocian al movimiento de personas, las cuales pueden ser negativas o positivas, razón por la cual los Estados pueden reaccionar endureciendo las políticas migratorias, la obtención de permisos laborales y de residencia, y el cierre de fronteras o la expulsión de refugiados; con el fin de evitar consecuencias a nivel político, económico o en materia de seguridad. Para comprobar lo anterior se va a realizará un análisis de texto, sobre posiciones nacionales y políticas comunitarias, así como una revisión de estudios y estadísticas relacionados con el tema.
Resumo:
El trastorno de hiperactividad y déficit de atención (THDA), es definido clínicamente como una alteración en el comportamiento, caracterizada por inatención, hiperactividad e impulsividad. Estos aspectos son clasificados en tres subtipos, que son: Inatento, hiperactivo impulsivo y mixto. Clínicamente se describe un espectro amplio que incluye desordenes académicos, trastornos de aprendizaje, déficit cognitivo, trastornos de conducta, personalidad antisocial, pobres relaciones interpersonales y aumento de la ansiedad, que pueden continuar hasta la adultez. A nivel global se ha estimado una prevalencia entre el 1% y el 22%, con amplias variaciones, dadas por la edad, procedencia y características sociales. En Colombia, se han realizado estudios en Bogotá y Antioquia, que han permitido establecer una prevalencia del 5% y 15%, respectivamente. La causa específica no ha sido totalmente esclarecida, sin embargo se ha calculado una heredabilidad cercana al 80% en algunas poblaciones, demostrando el papel fundamental de la genética en la etiología de la enfermedad. Los factores genéticos involucrados se relacionan con cambios neuroquímicos de los sistemas dopaminérgicos, serotoninérgicos y noradrenérgicos, particularmente en los sistemas frontales subcorticales, corteza cerebral prefrontal, en las regiones ventral, medial, dorsolateral y la porción anterior del cíngulo. Basados en los datos de estudios previos que sugieren una herencia poligénica multifactorial, se han realizado esfuerzos continuos en la búsqueda de genes candidatos, a través de diferentes estrategias. Particularmente los receptores Alfa 2 adrenérgicos, se encuentran en la corteza cerebral, cumpliendo funciones de asociación, memoria y es el sitio de acción de fármacos utilizados comúnmente en el tratamiento de este trastorno, siendo esta la principal evidencia de la asociación de este receptor con el desarrollo del THDA. Hasta la fecha se han descrito más de 80 polimorfismos en el gen (ADRA2A), algunos de los cuales se han asociado con la entidad. Sin embargo, los resultados son controversiales y varían según la metodología diagnóstica empleada y la población estudiada, antecedentes y comorbilidades. Este trabajo pretende establecer si las variaciones en la secuencia codificante del gen ADRA2A, podrían relacionarse con el fenotipo del Trastorno de Hiperactividad y el Déficit de Atención.