955 resultados para Zirconia ceramics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study evaluated the influence of two endodontic post systems and the elastic modulus and film thickness of resin cement on stress distribution in a maxillary central incisor (MCI) restored with direct resin composite using finite element analysis (FEA). A three-dimensional model of an MCI with a coronary fracture and supporting structures was performed. A static chewing pressure of 2.16 N/mm(2) was applied to two areas on the palatal surface of the composite restoration. Zirconia ceramic (ZC) and glass fiber (GF) posts were considered. The stress distribution was analyzed in the post, dentin and cement layer when ZC and GF posts were fixed to the root canals using resin cements of different elastic moduli (7.0 and 18.6 GPa) and different layer thicknesses (70 and 200 mu m). The different post materials presented a significant influence on stress distribution with lesser stress concentration when using the GF post. The higher elastic modulus cement created higher stress levels within itself. The cement thicknesses did not present significant changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan, which is a non-toxic, biodegradable and biocompatible biopolymer, has been widely researched for several applications in the field of biomaterials. Calcium phosphate ceramics stand out among the so-called bioceramics for their absence of local or systemic toxicity, their non-response to foreign bodies or inflammations, and their apparent ability to bond to the host tissue. Hydroxyapatite (HA) is one of the most important bioceramics because it is the main component of the mineral phase of bone. The aim of this work was to produce chitosan membranes coated with hydroxyapatite using the modified biomimetic method. Membranes were synthesized from a solution containing 2% of chitosan in acetic acid (weight/volume) via the solvent evaporation method. Specimens were immersed in a sodium silicate solution and then in a 1.5 SBF (simulated body fluid) solution. The crystallinity of the HA formed over the membranes was correlated to the use of the nucleation agent (the sodium silicate solution itself). Coated membranes were characterized by means of scanning electron microscopy - SEM, X-ray diffraction - XRD, and Fourier transform infrared spectroscopy - FTIR. The results indicate a homogeneous coating covering the entire surface of the membrane and the production of a semi-crystalline hydroxyapatite layer similar to the mineral phase of human bone. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon nitride has demonstrated to be a potential candidate for clinical applications because it is a non-cytotoxic material and has satisfactory fracture toughness, high wear resistance and low friction coefficient. In this paper, samples of silicon nitride, which were kept into rabbits` tibias for 8 weeks, and the adjacentbone tissue were analysed by scanning electron microscopy in order to verify the bone growth around the implants and the interaction between the implant and the bone. Bone growth occurred mainly in the cortical areas, although it has been observed that the newly bone tends to grow toward the marrow cavity. Differences were observed between the implants installed into distal and proximal regions. In the first region, where the distance between the implant and the cortical bone is greater than in the proximal region, the osteoconduction process was evidenced by the presence of a bridge bone formation toward the implant surface. The results showed that silicon nitride can be used as biomaterial since the newly bone grew around the implants. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical and dimensional stability associated with suitable fracture toughness and propitious tribological characteristics make silicon nitride-based ceramics potential candidates for biomedical applications, mainly as orthopedic implants. Considering this combination of properties, silicon nitride components were investigated in relation to their biocompatibility. For this study, two cylindrical implants were installed in each tibia of five rabbits and were kept in the animals for 8 weeks. During the healing time, tissue tracers were administrated in the animals so as to evaluate the bone growth around the implants. Eight weeks after the surgery, the animals were euthanized and histological analyses were performed. No adverse reactions were observed close to the implant. The osteogenesis process occurred during the entire period defined by the tracers. However, this process occurred more intensely 4 weeks after the surgery. In addition, the histological analyses showed that bone growth occurred preferentially in the cortical areas. Different kinds of tissue were identified on the implant surface, characterized by lamellar bone tissue containing osteocytes and osteons, by a noncalcified matrix containing osteoblasts, or by the presence of collagen III, which may change to collagen I or remain as a fibrous tissue. The results demonstrated that silicon nitride obtained according to the procedure proposed in this research is a biocompatible material. (c) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the crystal structures and phase transitions of nanocrystalline ZrO(2)-1 to -13 mol % Sc(2)O(3) by synchrotron X-ray powder diffraction and Raman spectroscopy. ZrO(2)-Sc(2)O(3) nanopowders were synthesized by using a stoichiometric nitrate-lysine get-combustion route. Calcination processes at 650 and at 850 degrees C yielded nanocrystalline materials with average crystallite sizes of (10 +/- 1) and (25 +/- 2) nm, respectively. Only metastable tetragonal forms and the cubic phase were identified, whereas the stable monoclinic and rhombohedral phases were not detected in the compositional range analyzed in this work. Differently from the results of investigations reported in the literature for ZrO(2)-Sc(2)O(3) materials with large crystallite sizes, this study demonstrates that, if the crystallite sizes are small enough (in the nanometric range), the metastable t ``-form of the tetragonal phase is retained. We have also determined the t`-t `` and t ``-cubic compositional boundaries at room temperature and analyzed these transitions at high temperature. Finally, using these results, we built up a metastable phase diagram for nanocrystalline compositionally homogeneous ZrO(2)-Sc(2)O(3) solid solutions that strongly differs from that previously determined from compositionally homogeneous ZrO(2)-Sc(2)O(3), Solid solutions with much larger crystallite sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrinsic paramagnetic responses were observed in the 60TeO(2)-25ZnO-15Na(2)O and 85TeO(2)-15Na(2)O mol% glasses, after gamma-irradiation at room temperature: (1) a shoulder at g(1) = g(parallel to) = 2.02 +/- 0.01 and an estimated g(perpendicular to)similar to 2.0 attributed to tellurium-oxygen hole center (TeOHC); (2) a narrow resonance at g(2)= 1.9960 +/- 0.0005 related to the modifiers and (3) a resolved resonance at g(3) = 1.9700 +/- 0.0005 ascribed to a tellurium electron center (TeEC) of an electron trapped at an oxygen vacancy (V(o)(+)) in a tellurium oxide structural center. It is suggested that the creation of (NBO(-),V(o)(+)) pair follows a mechanism where the modifier oxide molecule actuates as a catalyser. An additional model for the NBO radiolysis produced by the gamma-irradiation is proposed on the basis of the evolution of the g(1), g(2) and g(3) intensities with increasing dose (kGy). Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glass microspheres containing radionuclides are used to treat liver cancer. A promising alternative therapy is being developed based on the magnetic hyperthermia which is related to the heat supplied by a magnetic material under an alternating current magnetic field. The advantage of this option is that most of killed cells are cancer cells which are more susceptible to the temperature raise. In the present work aluminum iron silicate glasses containing minor glass modifiers and nucleating agents were synthesized as irregular shape particles which were further transformed in microspheres by using a petrol liquefied gas-oxygen torch. The optimized processing parameters which lead to microspheres that give a response to the magnetic field were determined. The dissolution rate in water at 90 degrees C was determined to be 3 x 10(-8) g cm(-2) min(-1). The microsphere size distribution was determined by laser scattering. The crystalline phase responsible for the ferromagnetic response was identified as magnetite. Since this phase has a high saturation magnetization and high Curie temperature, it is potentially useful for biomedical applications. The hysteresis magnetic loop was measured for materials produced in different conditions, and some of them showed to be appropriated for thermotherapy. The ratio Fe(3+)/Fe(total) was determined by Mossbauer spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to have a better understanding of the role of the structure and the defects involved in the polarization processes in an 85TeO(2)-15Na(2)O mol% glass, we used the thermally stimulated depolarization currents (TSDC technique). The TSDC of the non-irradiated sample presented a strong negative peak of current at the temperature of 340 K, preceded by a relatively weak positive peak at about 300 K. after different d.c. voltages of 1200, 1500 and 2000 V were applied. No response was obtained with 1000 V. but the peak intensity increased considerably for voltages above 1200 V. After gamma-irradiation of 25 and 50 KGy doses, a depolarization of the negative peak was observed in the sample submitted to 25 KGy, whereas for the sample irradiated with 50 KGy, six TSDC peaks appeared at regular intervals of 5 KGy, in the temperature range of 100 and 300 K. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermoluminescence (TL) and optically stimulated luminescence (OSL) processes in BeO phosphor. Two defect centres were identified in irradiated BeO phosphor by ESR measurements, which were carried out at room temperature and these were assigned to an O(-) ion and Al(2+) centre. The O(-) ion (hole centre) correlates with the main 190 degrees C TL peak. The Al(2+) centre (electron centre), which acts as a recombination centre, also correlates to the 190 degrees C TL peak. A third centre, observed during thermal annealing studies, is assigned to an O(-) ion and is related to the high temperature TL at 317 degrees C. This centre also appears to be responsible for the observed OSL process in BeO phosphor. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

YAG phosphor powders doped/codoped with Er(3+)/(Er(3+) + Yb(3+)) have been synthesised by using the solution combustion method. The effect of direct pumping into the (4)I(11/2) level under 980 nm excitation of doped/codoped Er(3+)/Yb(3+)-Er(3+) in Y(3)Al(5)O(12) (YAG) phosphor responsible for an infrared (IR) emission peaking at similar to 1.53 mu m corresponding to the (4)I(13/2)->(4)I(15/2) transition has been studied. YAG exhibits three thermally-stimulated luminescence (TSL) peaks at around 140A degrees C, 210A degrees C and 445A degrees C. Electron spin resonance (ESR) studies were carried out to identify the centres responsible for the TSL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0176 is identified as O(-) ion, while centre II with an isotropic g-factor 2.0020 is assigned to an F(+) centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal-annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and these two centres appear to correlate with the observed high-temperature TSL peak in YAG phosphor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient reddish orange emission MgSrAl(10)O(17):Sm(3+) phosphor was prepared by the combustion method. The phosphor has been characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis measurements. Photoluminescence spectrum revealed that samarium ions are present in trivalent oxidation states. The phosphor exhibits two thermally stimulated luminescence (TSL) peaks at 210 degrees C and 450 degrees C. Electron spin resonance studies were carried out to identify the defect centres responsible for the TSL process in MgSrAl(10)O(17):Sm(3+) phosphor. Three defect centres have been identified in irradiated phosphor and these centres are tentatively assigned to an O(-) ion and F(+) centres. O(-) ion (hole centre) correlates with the 210 degrees C TSL peak while one of the F+ centres (electron centre) appears to relate to the 450 degrees C TSL peak. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class microspheres containing the radioisotope (32)P, a beta(-) particle emitter, and half-life of 14.3 days, can be easily introduced in specific human organs such as liver, pancreas. and uterus to kill cancer cells. In the present work phosphate glass microspheres were produced with different compositions and particle size distribution in the range of 20- 30 mu m. Two different thermal processes were used to spherodize glass particles originally with irregular shapes. Samples were characterized by X-rays diffraction to check the amorphous structure, energy dispersive X-rays fluorescence spectroscopy to determine the final glass composition, and Fourier transformed infrared spectroscopy to determine the structural groups in the glass structure. The dissolution rate of glass samples in water was determined at 90 degrees C, and in simulated body fluid (SBF) at 37 degrees C. Classes with dissolution rates close to 10(-5) g/(cm(2) day) were obtained, which make them suitable for the present application. Scanning electron microscopy was used to evaluate the shape of the microspheres before and after the dissolution tests. The cytotoxicity tests showed that these microspheres can be used for biological applications. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, Ba(Zr(0.25)Ti(0.75))O(3) ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie-Weiss law. The optical properties were analysed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV-vis spectrum indicated that the Ba(Zr(0.25)Ti(0.75))O(3) ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO(6)] distorted clusters into a globally cubic matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline fine powder of YAlO(3) (YAP) was synthesized by the modified polymeric precursor method. A preliminary gradual pyrolytic decomposition under nitrogen flux was crucial in the removal process of organic residues to avoid the formation of molecular level inhomogeneities. YAP single phase was crystallized at temperatures between 950 degrees C and 1000 degrees C using chemically homogeneous ball-milled amorphous particles and very fast heating rates, corresponding to the lowest synthesis temperature of pure YAP nanopowder by soft chemistry routes. (C) 2009 Elsevier Ltd. All rights reserved.