906 resultados para Zinc selenide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal-based quantum dots (QDs) have demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless works and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on the adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also submitted to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected on the power conversion efficiency of complete devices, reaching values of 2 %. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose dehydrogenase (EC 1.1.1.47) from the halophilic Archaeon Haloferax mediterranei belongs to the medium-chain alcohol dehydrogenase superfamily and requires a zinc ion for catalysis. The zinc ion is coordinated by a histidine, a water molecule and two other ligands from the protein or the substrate, which vary during the catalytic cycle of the enzyme. In many enzymes of this superfamily one of the zinc ligands is commonly cysteine, which is replaced by an aspartate residue at position 38 in the halophilic enzyme. This change has been only observed in glucose dehydrogenases from extremely halophilic microorganisms belonging to the Archaea Domain. This paper describes biochemical studies and structural comparisons to analyze the role of sequence differences between thermophilic and halophilic glucose dehydrogenases which contain a zinc ion within the protein surrounded by three ligands. Whilst the catalytic activity of the D38C GlcDH mutant is reduced, its thermal stability is enhanced, consistent with the greater structural similarity between this mutant and the homologous thermophilic enzyme from Thermoplasma acidophilum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From previous experiments, it was evident that the accumulation of zinc in maturing wheat grains is highly regulated, but the regulatory mechanisms involved are not yet identified. In this study, we determined the transfer of radiolabelled zinc (fed directly into a leaf flap) from the flag leaf lamina to the grains. We also determined how this zinc transfer was affected by feeding additional unlabeled zinc (1 μmol per plant) either into the flag leaf sheath or the peduncle. Most of the 65Zn was retained in the feeding flap. A high percentage of the zinc exported from the flap accumulated in the grains with little accumulation of radiolabel in the other parts of the shoot. Unlabeled zinc remained mainly in the feeding flap and in the parts reached by the transpiration stream from the feeding position. The transfer of radiolabelled zinc was essentially not influenced by unlabeled zinc fed into another plant part. Our results suggest that the loading of zinc into the phloem and the mass flow in the sieve tubes might regulate zinc redistribution within the wheat shoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research program is to investigate the photoelectronic properties of zinc phosphide (Zn₃P₂ in single crystal form, in thin-film form, and in heterojunctions in which Zn₃P₂ forms one of the elements. This research will be directed toward understanding the role of crystalline defects and impurities in Zn₃P₂, the nature of the electronic charge transport in single crystal and thin-film material, and the properties of photovoltaic heterojunctions involving Zn₃P₂. The scope of the program extends from basic investigations of materials properties on single crystals to the preparation and characterization of all-thin-film heterojunction divices. One of the principal motivations behind this research program is the realization that Zn₃P₂ is a relatively uninvestigated yet ideal component for photovoltaic heterojunction use in solar energy conversion. The proposed program will concentrate on the basic materials problems involved with Zn₃P₂, providing the kind of information needed for other more developmental programs directed toward actual practical cells.