982 resultados para Z boson
Resumo:
The impact of a (I=0, JP=1/2+)Z+(1540) resonance with a width of 5 MeV or more on the K+N(I=0) elastic cross section and on the P01 phase shift is examined within the KN meson-exchange model of the Jülich group. It is shown that the rather strong enhancement of the cross section caused by the presence of a Z + with the above properties is not compatible with the existing empirical information on KN scattering. Only a much narrower Z+ state could be reconciled with the existing data - or, alternatively, the Z + state must lie at an energy much closer to the KN threshold.
Resumo:
We study the production of gauge-boson pairs at the next generation of linear e+e- colliders operating in the eγ mode. The processes eγ → VV′F (V,V′ = W,Z, or γ and F = e or ν) can give valuable information on possible deviations of the quartic vector-boson couplings from the Standard Model predictions. We establish the range of the new couplings that can be explored in these colliders based on a 3σ effect in the total cross section. We also present several kinematical distributions of the final state particles that could manifest the underlying new dynamics. Our results show that an eγ collider can extend considerably the bounds on anomalous interactions coming from oblique radiative corrections and from direct searches in e+e- colliders.
Resumo:
We derive an infinite set of conserved charges for some Z(N) symmetric quantum spin models by constructing their Lax pairs. These models correspond to the Potts model, Ashkin-Teller model and the particular set of self-dual Z(N) models solved by Fateev and Zamolodchikov [6]. The exact ground state energy for this last family of hamiltonians is also presented. © 1986.
Resumo:
We investigate the effects induced by excited leptons at the one-loop level in the observables measured on the Ζ peak at LEP. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to both oblique parameters and Ζ partial widths. Our results show that the new effects are comparable to the present experimental sensitivity, but they do not lead to a significant improvement on the available constraints on the couplings and masses of these states.
Resumo:
We estimate the attainable limits on the coupling of a nonstandard Higgs boson to two photons taking into account the data collected by the Fermilab collaborations on diphoton events. We based our analysis on a general set of dimension-6 effective operators that give rise to anomalous couplings in the bosonic sector of the standard model. If the coefficients of all blind operators have the same magnitude, indirect bounds on the anomalous triple vector-boson couplings can also be inferred, provided there is no large cancellatton in the Higgs-gamma-gamma coupling.
Resumo:
We consider, in the electroweak standard model context, several left-right asymmetries in μe elastic scattering at fixed target and collider experiments. For the former case, we show that the muon mass effects are important in a wide energy range. We also show that these asymmetries are sensitive to the electroweak mixing angle θW. The effect of an extra Z' neutral vector boson appearing in a 3-3-1 model is also considered. The capabilities of these asymmetries in the search of this extra Z' are addressed.
Resumo:
Higgs bosons can have a substantial invisible branching ratio in many extensions of the Standard Model, such as models where the Higgs bosons decay predominantly into light or massless weakly interacting Goldstone bosons. In this work, we examine the production mechanisms and backgrounds for invisibly decaying Higgs bosons at the Next Linear e+e- Collider operating in the modes e+e-, eγ, and γγ. We demonstrate that such machine is much more efficient to survey for invisibly decaying Higgs bosons than the Large Hadron Collider at CERN.
Resumo:
We study the effect of anomalous Hγγ and HZγ couplings, described by a general effective Lagrangian, on the process e+e-→bb̄γ at CERN LEP 2 energies. We include the relevant irreducible standard model background to this process, and from the photon energy spectrum, we determine the reach of LEP 2 to unravel the anomalous couplings by analyzing the significance of the signal for a Higgs boson with a mass up to 150 GeV.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
In a previous article,1 the development and molecular characterization of three polyesters from N-carbobenzyloxy-L-glutamic acid (ZGluOH) were reported. The polymers were a linear, heterochain polyester (ZGluOH and ethylene glycol), a crosslinked heterochain polyester (ZGluOH and diglycidyl ether of 1,4-butanediol), and a crosslinked, heterochain aromatic polyester (ZGluOH and diglycidyl ether of bisphenol A). In this manuscript, results of biodegradation studies are reported. The three polymers hydrolyzed to low molecular weight oligomers similar to the monomers with lipase. When exposed to a mixed culture of micro-organisms, the first two resins degraded to biomass and respiratory gases. The crosslinked heterochain aromatic polyester resisted microbial degradation.
Resumo:
Aim. The purpose of this study was to provide normal values for maximum phonation time (MPT) and the s/z ratio by examining 1660 children aged 4-12 years and without vocal signs or symptoms. Methods. The technique was based on the sustained emission of the /a/ vowel and fricatives /s/ and /z/. Results. The average of the MPT in children of the different age groups was as follows: 6.09 seconds for the age group 4-6 years (males, 5.97; female, 6.21 seconds), 7.94 seconds for the age group 7-9 years (males, 8.07; females, 7.79 seconds), and 8.98 for the age group 10-12 years (males, 9.05; females, 8.92 seconds). The overall average for males was 7.78 and females 7.64 seconds. The s/z ratio was near 1.0 in most children but above 1.2 in 133 children and below 0.8 in 133 children. Conclusion. These values of MPT and s/z ratio can be used as normative in further pediatric studies.
Resumo:
The ( Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C12H12F3NO3) compound was thoroughly studied by IR, Raman, UV-visible, and C-13 and F-19 NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) angstrom, b = 7.8210(3) angstrom, c := 13.8970(5) angstrom, beta = 116.162(2)degrees, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH center dot center dot center dot 0 and NH center dot center dot center dot 0 bonds, which are arranged in the lattice as an OH center dot center dot center dot 0 bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.
Resumo:
Let G = Z(pk) be a cyclic group of prime power order and let V and W be orthogonal representations of G with V-G = W-G = W-G = {0}. Let S(V) be the sphere of V and suppose f: S(V) -> W is a G-equivariant mapping. We give an estimate for the dimension of the set f(-1){0} in terms of V and W. This extends the Bourgin-Yang version of the Borsuk-Ulam theorem to this class of groups. Using this estimate, we also estimate the size of the G-coincidences set of a continuous map from S(V) into a real vector space W'.
Resumo:
Excited states of the N = Z = 33 nucleus As-66 have been populated in a fusion-evaporation reaction and studied using gamma-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T = 1 states. A new 3(+) isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T = 1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A = 70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.