990 resultados para Wild plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While WiFi monitoring networks have been deployed in previous research, to date none have assessed live network data from an open access, public environment. In this paper we describe the construction of a replicable, independent WLAN monitoring system and address some of the challenges in analysing the resultant traffic. Analysis of traffic from the system demonstrates that basic traffic information from open-access networks varies over time (temporal inconsistency). The results also show that arbitrary selection of Request-Reply intervals can have a significant effect on Probe and Association frame exchange calculations, which can impact on the ability to detect flooding attacks.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MIR spectroscopy is an established technique which has process monitoring applications in the chemical and pharmaceutical industries. Previous attempts to utilise the technology for monitoring of AD plants were of limited success, with operation hindered by severe clogging of the probe.

Novel fittings, which allow a probe to be withdrawn from the process fluid, cleaned and recalibrated in situ have now been developed to combat this clogging problem. This has allowed a spectroscopic probe to be used successfully in lab scale digesters for real time measurement of VFA concentration, a key parameter to the stability of AD plants.

This project will demonstrate the technology at a farm scale AD plant for the first time. Both real-time measurements of VFA concentrations and parameters currently measured by plant operators will be available, leading to state-of-the-art monitoring and control of the AD plant. With the improved monitoring that this probe will deliver, it is hoped to realise a 10% increase in biogas production without compromising the stability of the process. This will deliver both economic and environmental benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants. We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead is a highly toxic metal known to be an important cause of morbidity and mortality in waterbirds and terrestrial birds worldwide. The risk to birds of poisoning from lead has resulted in the introduction of legislation in many countries, such as UK restrictions on the use of lead in angling weights and lead gunshot. In this study, we examined data on current and historical trends in lead poisoning in British waterbirds and related these to the introduction of legislation restricting the use of lead. Our results indicate that lead poisoning has continued to affect a wide range of British waterbirds long after legal restrictions were introduced. Elevated levels of lead (i.e. > 20.0 mu g/dL) were found in the blood of 34 % (n = 285) of waterbirds tested at four sites in Britain during the 2010/2011 winter and accounted for the deaths of at least 10.6 % (n = 2,365) of waterbirds recovered across Britain between 1971 and 2010 and 8.1 % (n = 1,051) between 2000 and 2010, with lead gunshot being the most likely source of poisoning. The proportion of birds dying from lead poisoning in England did not vary significantly after the introduction of legislation, accounting for 13.7 % of non-infectious causes of death between 1971 and 1987 (n = 204), 20.8 % (n = 360) between 1988 and 1999 and 11.8 % (n = 423) between 2000 and 2010, despite a significant change in lead-related mortality in mute swans found during the same time period, 25 % (n = 12) between 1971 and 1987, 4.6 % (n = 65) between 1988 and 1999 and 2 % (n = 100) between 2000 and 2010. Existing legislation needs review and extension to ensure the delivery of international commitments and a broad-scale transition to the use of non-toxic shot and angling materials in all environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order:? iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain. A compartmented soil-glass bead culture system was used to investigate characteristics of iron plaque and arsenic accumulation and speciation in mature rice plants with different capacities of forming iron plaque on their roots. X-ray absorption near-edge structure spectra and extended X-ray absorption fine structure were utilized to identify the mineralogical characteristics of iron plaque and arsenic sequestration in plaque on the rice roots. Iron plaque was dominated by (oxyhydr)oxides, which were composed of ferrihydrite (81-100%), with a minor amount of goethite (19%) fitted in one of the samples. Sequential extraction and XANES data showed that arsenic in iron plaque was sequestered mainly with amorphous and crystalline iron (oxyhydr)oxides, and that arsenate was the predominant species. There was significant variation in iron plaque formation between genotypes, and the distribution of arsenic in different components of mature rice plants followed the following order:? iron plaque > root > straw > husk > grain for all genotypes. Arsenic accumulation in grain differed significantly among genotypes. Inorganic arsenic and dimethylarsinic acid (DMA) were the main arsenic species in rice grain for six genotypes, and there were large genotypic differences in levels of DMA and inorganic arsenic in grain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Nicotiana plumbaginifolia plant (apm5(r)) resistant to amiprophos-methyl (APM), a phosphoroamide herbicide, was isolated from protoplasts prepared from leaves of haploid plants. Genetic analysis revealed that the resistance is coded for by a dominant nuclear mutation and is associated with the increased stability of cortical microtubules. Two-dimensional polyacrylamide-gel electrophoresis, combined with immunoblotting using anti-tubulin monoclonal antibodies, showed that part of the beta-tubulin in the resistant plant possessed lower isoelectric points than the beta-tubulin of susceptible wild-type plants. These results provide evidence that the resistance to APM is associated with a mutation in a beta-tubulin gene. The APM-resistant line showed cross-resistance to trifluralin, a dinitroaniline herbicide, suggesting a common mechanism of resistance between these two classes of herbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interspecific and intertribal somatic hybrids were obtained to study the composition and function of microtubules in hybrid plants. The amiprophosmethyl-resistant mutant Nicotiana plumbaginifolia L. was used as donor; canamycin-resistant mutants N. sylvestris L. and Atropa belladonna served as recipients. Cytogenetic analysis confirmed the hybrid nature of the clones selected. Immunoflourescent analysis showed that constitutions of mitotic spindles in regenerating protoplast, isolated from the hybrid NpAb-107 and the mutant N. plunbaginifolia, show no change after a 2-hour treatment with 5 mu M of amiprophosmethyl; in A. belladonna, the division spindle is completely destroyed under these conditions. Tubulin was isolated from the hybrid NpAb-107 and separated by two-dimensional electrophoresis. The results showed that NpAb-107 has the beta-tubulin isoform specific for N. plumbaginifolia in addition to all isoforms of A. belladonna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jasmonates (JA) act as a regulator in plant growth as well as a signal in plant defense. The Arabidopsis vegetative storage protein (AtVSP) and plant defense-related proteins thionin (Thi2.1) and defensin (PDF1.2) have previously been shown to accumulate in response to JA induction. In this report, we isolated and characterized a novel recessive mutant, cex1, conferring constitutive JA-responsive phenotypes including JA-inhibitory growth and constitutive expression of JA-regulated AtVSP, Thi2.1 and PDF1.2. The plant morphology and the gene expression pattern of the cex1 mutant could be phenocopied by treatment of wild-type plants with exogenous JA, indicating that CEX1 might be a negative regulator of the JA response pathway.