923 resultados para Two-way ANOVA
Resumo:
Based on the data analysis, this study further explores the characteristics of East Asian winter monsoon (hereafter, EAWM, for brevity) as well as the related air-sea-land system, and illustrates how and to what degree anomalous signals of the subsequent Asian summer monsoon are rooted in the preceding EAWM activity. We identified an important air-sea coupled mode, i.e., the EAWM mode illustrated in Section 3. In cold seasons, strong EAWM-related air-sea two-way interaction is responsible for the development and persistence of the SSTA pattern of EAWM mode. As a consequence, the key regions, i.e., the western Pacific and South China Sea (hereafter, SCS, for brevity), are dominated by such an SSTA pattern from the winter to the following summer. In the strong EAWM years, the deficient snow cover dominates eastern Tibetan Plateau in winter, and in spring, this anomaly pattern is further strengthened and extended to the northwestern side of Tibetan Plateau. Thus, the combined effect of strong EAWM-related SSTA and Tibetan snow cover constitutes an important factor in modulating the Asian monsoon circulation. The active role of the EAWM activity as well as the related air-sea-land interaction would, in the subsequent seasons, lead to: 1) the enhancement of SCS monsoon and related stronger rainfall; 2) the northward displacement of subtropical high during Meiyu period and the related deficient rainfall over Meiyu rainband; 3) above-normal precipitation over the regions from northern Japan to northeastern China in summer; 4) more rainfall over the Arabian Sea and Northeast India, while less rainfall over southwest India and the Bay of Bengal. The strong EAWM-related air-sea interaction shows, to some degree, precursory signals to the following Asian summer monsoon. However, the mechanism for the variability of Indian summer monsoon subsequent to the strong EAWM years remains uncertain.
Resumo:
本文利用不同的分子标记方法,分别对牙鲆及大黄鱼不同养殖群体的生长、抗病等经济性状的候选基因进行了序列多态性研究,检测到了几个SNP位点和微卫星的多态性位点,并分析了它们与经济性状之间的相关性;同时,利用微卫星的多态性位点对牙鲆2个养殖群体的遗传变异进行了分析,这些均为海水鱼类遗传育种及标记辅助选育工作提供了基础数据。 在牙鲆胶南养殖群体中,以100个个体为实验材料,根据其生长激素(GH)基因的6个外显子序列设计引物,通过SSCP分析技术显示该群体GH基因的第4外显子存在多态性,检测到2种基因型,AA型和AB型。DNA测序结果表明,AB型在第1763位发生碱基突变,c→t,与AA型同源性达到99%。连锁分析结果表明:这2种基因型的个体在体重和头长上表现出显著的差异,AB型个体的体重和头长都明显大于AA型个体(P<0.05),由此推测等位基因B是一个对牙鲆体重和头长都有利的等位基因;这2种基因型个体之间在其体型性状上也存在显著差异(P<0.05);同时,该多态位点的Hardy-Weinberg平衡性检验结果表明,该群体处于Hardy-Weinberg平衡状态。在牙鲆GH基因第1外显子区域还发现了一个微卫星位点,对该位点进行多态性分析,检测到5种基因型、3种等位基因,one-way ANOVA统计结果显示,基因型AC个体的体重、头长和体高明显大于其它基因型个体(P<0.05),C是一个对体重、头长和体高有利的等位基因。 对2个大黄鱼养殖群体的GH基因进行SSCP分析后发现,浙江群体大黄鱼GH基因在第196位存在1个SNP(g→a)位点,检测到2种基因型,AA和AB。t检验结果表明,AA型个体的体高比AB型个体的高(P≤0.05),但AB型个体在体长/体高上占优势(P≤0.05),提示该突变位点可以作为大黄鱼体型性状的候选标记。福建群体大黄鱼GH基因在第692位有1个SNP位点(t→c),共检测到2种基因型,CC型和CD型,其中,CD基因型个体的体重和全长显著大于CC基因型个体(P≤0.01),提示该位点可以作为大黄鱼体重和头长性状的候选标记。 在牙鲆胶南和日照2个养殖群体中,采用牙鲆GHR基因5’端Promoter区的一个微卫星标记,进行了群体遗传变异的研究,并探索了该基因多态性位点与牙鲆生长性状之间的相关性。结果表明,2个群体在该位点检测到的等位基因数为12和9个,有效等位基因数为6.26和5.04个。两个群体该位点的Hardy-Weinberg遗传偏离指数均为正值,并没有显示出杂合子缺失,但各基因型分布频率都在一定程度上偏离Hardy-Weinberg平衡(P<0.01)。连锁分析发现,在胶南群体中,IM基因型对应的个体在全重、全长、体长、头长、体高和眼径形态学数据中均是最大的,但仅在体重上极其显著的大于全部其它基因型个体;在日照群体中,BC基因型对应的个体在全重、全长、体高、尾柄高、尾柄长和眼径数据中均是最大的;而CJ基因型对应的个体在体长和头长这两组数据中是最大的。由此认为,该位点IM基因型可以作为牙鲆体重性状的潜在标记。 在进行牙鲆抗病性状标记的筛选时,利用迟缓爱德华氏菌(Edwardsiella tarda)LSE40对牙鲆鱼进行攻毒感染实验,得到死亡群体和未死亡群体。选择Toll样受体基因中的TLR2、TLR3和TLR9基因作为候选基因,分别对这3个基因中的部分序列共设计7对引物进行扩增,同时对扩增产物进行RFLP多态性分析,目前只在TLR3基因内检测到一个EcoRI的酶切多态性位点,测序后发现,这是由于在TLR3基因第3806位的EcoRI酶切位点在某些个体中缺失所致。酶切产物共呈现出3种基因型,分别定义为AA,AB和BB。χ2检验证明该多态性位点与牙鲆抗迟缓爱德华氏菌LSE40的能力有一定关系。利用多因素非条件Logistic回归分析对死亡组和存活组牙鲆的各种形态学数据以及不同基因型之间进行了分析,发现体长、头长和体高均具有显著的相关性(P<0.05),而这几个因素与体重的相关性不显著(P>0.05)。多因素非条件Logistic分析后发现:AA基因型对死亡率具有显著的影响(P<0.05),是主要的危险因素,而AB基因型的作用不显著(P>0.05);头长是主要的保护因素(P<0.05),体重对死亡率的影响很小。χ2检验证明,等位基因A是对死亡的主要危险等位基因,B是对存活有利的主要等位基因。推测该位点可以作为牙鲆抗迟缓爱德华氏菌的潜在标记。
Resumo:
微型和小型底栖动物是底栖微/小食物网的重要构成。相对浮游生态系统, 迄今国际间对底栖食物网的认知极为欠缺。这一方面是由于微型生物形态和功能上的复杂性和多样性, 另一方面原因在于研究方法的障碍—主要是微型和小型底栖动物的定量提取和定性分析。本研究首先进行了方法学改良, 并应用新方法对底栖微食物网的重要功能类群—纤毛虫原生动物和小型底栖动物进行了不同生境的周年按月采样, 定性及定量研究的同时, 联系环境因子对微型和小型底栖生物的环境监测进行了探讨。 微型和小型底栖生物的定量研究首先涉及到目标生物在沉积物中的有效提取, 目前硅胶液提取是普遍使用的方法, 其中Ludox液主要应用于小型生物, 它不但价格便宜而且比重合适, 因此在常规生态研究中被广为接受。不过, Ludox易与于海水中的阳离子产生凝结而无法直接用于微型生物; 目前唯一直接应用于微型生物提取的是Percoll硅胶液, 但其昂贵的价格使其在常规生态研究中受到极大限制。本研究以价格低廉的Ludox 硅胶液结合定量蛋白银染色 (QPS) 技术开发了一种新的方法, 即Ludox-QPS法。主要流程为: 样品采集与固定、淘洗/稀释降盐、Ludox密度梯度离心、过滤浓缩和琼脂包埋, QPS染色、永久封片及鉴定计数。添加已知数量的纤毛虫至无生物底泥的重获实验表明, 该密度梯度离心的提取率大于94%; 该方法对自然沉积物中纤毛虫的提取率达97.6%, 对沙质、泥沙质和泥质中海洋线虫的提取率分别达97%、96.9% 和97.8%。对比实验表明, 经QPS制片获得的小型动物的丰度和类群数量与传统方法相当或更高, 尤其当小个体虫体占优势时, 该法显示出较传统方法 (导致数量低估) 更为明显的定量优越性。该方法除用于纤毛虫和小型动物的定量分析外, 还具有较高的分类分辨率, 染色后的纤毛虫原生动物大多类群可鉴定到属, 部分可鉴定到种, 以此可在群落水平上研究其生态作用。 根据新开发的Ludox-QPS技术, 在大沽河潮间带依据盐度梯度选定2个站位 (IIQ和营海) 进行了周年按月采样, 对底栖纤毛虫和小型底栖动物进行了定量研究。纤毛虫原生动物在IIQ和营海的年平均丰度分别为2236 inds./10 cm2 和935 inds./10 cm2 (28 inds./ml 和12 inds./ml), 平均生物量分别为119.1 gC/10 cm2和54.2 gC/10 cm2 (1.5 gC /ml 0.7 gC/ml)。丰度的季节变化趋势为: 春天 > 秋天 > 夏天 > 冬天。垂直分布上, 在营海分布于表层0-0.5 cm 的比例为57.1%, 分布于0.5-2 cm、2-4 cm和4-8 cm比例分别为23.1%、11.4% 和8.5%; 13个月中除12月份外, 4-8 cm均有一定数量的纤毛虫分布; 而在IIQ, 97% 的纤毛虫分布在0-0.5 cm, 分布在0.5-2 cm、2-4 cm和4-8 cm比例分别为2.4%、0.4%和0.2%, 4-8 cm的分布只发生在春季和秋季。纤毛虫的多样性季节变化明显, 春秋季物种丰富, 两个站点每毫升沉积物的平均物种数分别为18和6。Two-Way Crossed ANOSIM 分析表明纤毛虫群落在月份间和站点间的差异极其显著。Pseudochilodonopsis sp., Chilodontopsis sp., Euplotes sp.及Prorodon sp.是表征两个生镜中纤毛虫群落的主要类群。 同时, 发现了14个小型生物类群, 其中线虫在IIQ和营海的丰度优势度分别为97.4% 和78.6%。小型动物在IIQ和营海的年平均丰度分别为4793 inds./10 cm2和8915 inds./10 cm2 (60 inds./ml和111 inds./ml), 其生物量分别为1068.8 gC /10 cm2和1790 gC /10 cm2 (13.4 gC/ml和22.4 gC/ml)。小型底栖动物的丰度在IIQ的季节变化为: 夏季 (7888 inds./10cm2) > 秋季 (5447 inds./10cm2) > 春季 (3731 inds./10cm2) > 冬季 (2780 inds./10cm2); 在营海则完全相反: 冬季 (15579 inds./10cm2) > 春季 (10691 inds./10cm2) > 秋季 (6611 inds./10cm2) > 夏季 (4667 inds./10cm2)。小型底栖动物和纤毛虫的相对重要性存在明显的区域和季节差异。 纤毛虫原生动物、小型动物及环境因子的相关分析表明, 纤毛虫的丰度和多样性与温度和盐度及有机质含量显著相关, 与小型动物没有显著相关性; 群落结构分析表明, 温度、有机质和小型动物的丰度的组合与纤毛虫群落丰度的相关系数为0.345; 盐度、脱镁叶绿素、有机质和小型动物生物量的组合与纤毛虫群落多样性的相关系数为0.403。依据海洋线虫和桡足类的比值 (N/C) 推测, IIQ 可能存在严重的有机污染, 营海则存在明显的季节波动, 8月和9月及2月可能是污染最严重的季节, 这种状况在纤毛虫群落结构的CLUSTER聚类中得到验证。虽然目前尚没有形成有关微型底栖生物-纤毛虫原生动物的污染检测的直接依据, 但本研究说明纤毛虫群落的确对环境污染具有一定的感应度, 而且这种感应和利用小型生物的主要类群估算的污染检测 (N/C) 存在一定程度的关联。 90年代早期有关青岛湾有机污染带的研究表明, 经彻底截污后, 其环境状况向良性发展。进一步了解该湾的健康状况, 2006.5-2007.5月对该湾沙质和泥沙质的小型动物进行周年按月采样。小型动物在泥沙质和砂质沉积物中的年平均丰度分别为4853 ± 1292 inds./10 cm2和1528 ± 569 inds./10 cm2; 年平均总生物量分别为1434.1 ± 897.0 gC /10cm2和720.7 ± 353.8 gC/10cm2。沙质底小型生物的丰度季节波动明显, 6月份和12月份最高, 3月份和9月份最低; 泥沙质季节波动不明显, 6月份最高。两个站点均有48%的小型动物分布在0-0.5 cm 表层, 海洋线虫在表层的分布比例分别为48% (泥沙质) 和34% (砂质)。共检获14个小型动物类群, 其中线虫在泥沙质和砂质沉积物中的年平均丰度分别4619 ± 1255 inds./10cm2和1014 ± 376 inds./10cm2, 其丰度优势度分别为95.2%和66.4%。其它在丰度上占优势的类群, 泥沙质依次为多毛类 (1.5%)、甲壳幼体 (1.5%) 和桡足类 (0.7%); 沙质依次为: 甲壳类幼体 (12.6%)、腹毛类 (8.3%) 和 桡足类 (6.2%)。CLUSTER聚类分析表明, 泥沙质和和砂质中小型生物的丰度组成具有64%的相似性。BIOENV分析表明, 温度、盐度、中值粒径和粘土粉砂含量的组合最能解释不同月份之间和不同站位间的差异, 其相关系数为0.614。依据小型生物的丰度和类群组成, 表明泥沙质底尚存一定的有机污染。
Resumo:
We collected fish abundance data in the Changjiang (Yangtze River) estuary and adjacent waters in November 1998, May 1999, November 2000, and May 2001. Using the data, we evaluated the characteristics of the fish assemblages at each site and investigated the effect of several environmental factors. We used a multivariate analysis, including community ordination methods such as detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA), and two-way indicator species analysis (TWINSPAN). We analyzed the biological community structure and environmental factors to determine their spatial distributions, temporal dynamics, and seasonal variations. Among the fish species, five exceeded 5% of the total abundance: Harpodon nehereus (42.82%), Benthosema pterotum (13.85%), Setipinna taty (11.64%), Thryssa kammalensis (9.17%) and Apogonichthys lineatus (6.49%). These were separated into four ecological assemblages: hypsithermal-saline, hypsithermal-brackish, hypothermal-brackish, and hypothermal-saline. We evaluated the degree of influence of environmental factors on the fish community. Our analyses suggested that environmental factors including water depth, salinity, turbidity, transparency, nutrient, and suspended matter formed a synthetic spatial gradient between the coastal and pelagic areas. Ecological and environmental factors changed temporally from 1998 to 2001, and drove the fish community succession. The environmental factors driving the fish community structure included bottom temperature, water depth, bottom and surface pH, surface total phosphorous, and bottom dissolved oxygen. This investigation was completed before completion of the Three Gorges Dam; therefore the results of this study provide an important foundation for evaluating the influence of the human activities.
Resumo:
Rates of respiration and excretion of the Pacific oyster, Crassostrea gigas, were measured seasonally from June 2002 to July 2003 under ambient conditions of food, water temperature, pH, and salinity in Sanggou Bay, an important mariculture coast in north China. The aim of this study is to obtain fundamental data for further establishing an energy budget model and assessing the carrying capacity for cultivation of C. gigas in north China. Oysters were collected monthly or bimonthly from the integrated culture areas of bivalve and kelp in the bay. Oxygen consumption and ammonium and phosphorus excretion rates were measured, and ratios of O/N and NIP were calculated. One-way ANOVA was applied to determine differences among these parameters that act as a function of seasonal variation. All the physiological parameters yielded highly significant variations with season (P<0.01) The rate of respiration varied seasonally, with the highest oxygen consumption rate in July and the lowest rate in January, ranging from 0.07 to 2.13 mg O-2 h(-1) g(-1) dry tissue weight (DW). Maximum and minimum ammonium excretion rates were recorded in August and January, respectively, ranging from 0.51 to 5.40 mu mol NH4-N h(-1) g(-1) DW. Rates of phosphorus excretion varied from 0.11 (in January) to 0.64 (in July) mu mol PO4-P h(-1) g(-1) DW. The O/N and N/P ratios changed from 9.2 (in January) to 59.8 (in July) and from 4.6 (in January) to 10.9 (in August), respectively. For each season, the allometric relationship between the physiological response (e.g., rate of oxygen consumption, ammonium and phosphorus excretion) and DW of the animal was estimated using the formula: Y=a x DWb. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
研究了偏动式双程SMA驱动器的工作机理,建立了驱动器输出力、输出位移、负载与驱动元件弹性刚度和预变形之间的变量关系。基于热力学基本定律,给出了双程SMA驱动器工作过程中能量的周期性流动、转移和转化模型,指出双程SMA驱动器双程做功的能量都来源于SMA元件的相变弹性势能,能量的一部分用于来程做功,一部分在来程转移给偏置元件,用于回程时做工,还有一部分被释放掉。
Resumo:
在基于不同总线标准的个人计算机、工程工作站以及一些工业控制机间建立高速的并行通信通道,将它们构成多机系统,能够以较小的代价获得增强的系统特性.本文引入了一种在系统总线间提供并行数据通道的异种总线互连底板——总线桥的概念,讨论了它的结构和工作原理,提出了其实现方案,并着重描述了为总线桥定义的双向并行通讯协议 BBP(Bus Bridge Prtocol)
Resumo:
With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.
Resumo:
Voice alarm plays an important role in emergency evacuation of public place, because it can provide information and instruct evacuation. This paper studied the optimization of acoustic and semantic parameters of voice alarms in emergency evacuation, so that alarm design can improve the evacuation performance. Both method of magnitude estimation and scale were implemented to investigate participants' perceived urgency of the alarms with different parameters. The results indicated that, participants evaluated the alarms with faster speech rate, with greater signal to noise ratio (SNR) and under louder noises more urgent. There was an interaction between noise level and content of voice alarm. Signals with speech rate below 4 characters / second were evaluated as non urgent at all. Intelligibility of the voice alarm was investigated by evaluating the key pointed recognition performance. The results showed that, speech rate’s effect was a marginal significance, and 7 characters / second has the highest intelligibility. It might because that the faster the signal spoken, the more attention was paid. Gender of speaker and SNR did not have a significant effect on the signals’ intelligibility. This paper also investigated impact of voice alarms' content on human behavior in emergency evacuation in a 3-D virtual reality environment. In condition of "telling the occupants what had happened and what to do", the number of participants who succeeded in evacuation was the largest. Further study, in which similar numbers of participants evacuate successfully in three conditions, indicated that the reaction time and evacuation time was the shortest in the aforesaid condition. Although one-way ANOVA shows that the difference was not significant, the results still provided some reference to the alarm design. In sum, parameters of voice alarm in emergency evacuation should be chosen to meet needs from both perceived urgency and intelligibility. Contents of the alarms should include "what had happened and what to do", and should vary according to noise levels in different public places.
Resumo:
Emotion is one of the most popular spots in recent decision making research, while regret is always being considered as the most relevant emotion with decision making. Current article firstly reviewed the literature of regret theory to date to profile the relation between regret and decision making under uncertainty through three mainlines: experienced regret, anticipated regret and regret orientation, respectively. And then, based on the theory of regret regulation raised by Zeelenberg recently, we came up with a theory of risk preference regulated by regret. Then three studies were conducted under the current framework, by using experiment, survey, and quasi experiment design. The major findings were below: In study 1, when playing ultimatum game, risk preference in decision making can be determined by experienced regret and anticipated regret of risk aversion, which made individual risk taking; In study 2, survey showed that risk orientation was negatively related with risk taking (health/safety, recreational and social); In study 3, when asked the Asian Disease Problem, risk preference can be determined by the coherence of the risk preference between the past decision and the current alternative. Individuals much more like alternative with the same risk preference of the past decision. A two way interaction was found, regret orientation, as a personality, was found as a moderator. Individuals with high regret orientation were more sensitive to the coherence of the risk preference than those with low regret orientation. Three studies provide fruitful evidences for the theory of risk preference regulated by regret in different prospective, show us the function of regret in decision making.
Resumo:
A newly developed experimental model called simulation of real mission was used to explore law of time perception and user endurance for feedback delay under Network-Supported Co-operative Work. Some non-technological factors influencing time perception and user endurance (mission type、difficulty level、feedback method、partner type、gender and A type behavior pattern) were also examined. Results of the study showed that: (1) Under condition of waiting without feedback, mission type and difficulty level demonstrated significant main effects on judgment of waiting duration. People will wait more time to receive partner's feedback if he or she perceives that partner's task is difficult, and the longest waiting duration (LWD) in the mission of computation is longer than the LWD in the mission of proof searching. (2) Under condition of waiting with feedback, experimental data perfectly supported Vierordt's Law: short duration is underestimated, long duration is overestimated, only proper duration (2-6 second) can be estimated correctly. The proper duration will vary with the changing of difficulty levels of mission. More long the waiting duration is, more estimation error will be occurred. The type difference of partner has no significant effect on the law of time perception. (3) Under condition of waiting with feedback, non-technology factors can significantly effect user's endurance. When subjects were told their partner was human, mission type and difficulty level of mission could significantly effect user's endurance. When subjects were told their partner was computer, A type behavior pattern and difficulty level of mission could significantly effect user's endurance. The two-way interaction effect between A type behavior pattern and gender was detected.
Resumo:
A common assumption made in traffic matrix (TM) modeling and estimation is independence of a packet's network ingress and egress. We argue that in real IP networks, this assumption should not and does not hold. The fact that most traffic consists of two-way exchanges of packets means that traffic streams flowing in opposite directions at any point in the network are not independent. In this paper we propose a model for traffic matrices based on independence of connections rather than packets. We argue that the independent connection (IC) model is more intuitive, and has a more direct connection to underlying network phenomena than the gravity model. To validate the IC model, we show that it fits real data better than the gravity model and that it works well as a prior in the TM estimation problem. We study the model's parameters empirically and identify useful stability properties. This justifies the use of the simpler versions of the model for TM applications. To illustrate the utility of the model we focus on two such applications: synthetic TM generation and TM estimation. To the best of our knowledge this is the first traffic matrix model that incorporates properties of bidirectional traffic.
Resumo:
Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns.
Resumo:
Aim: To investigate (a) variability in powder/liquid proportioning (b) effect of the extremes of any such variability on diametral tensile strength (DTS), in a commercial zinc phosphate cement. Statistical analyses (a = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios observed would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios observed would not differ from those made using the manufacturer's recommended ratio. Methodology: Thirty-four undergraduate dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios (m/m), together with the manufacturer's recommended ratio (m/m), were used to prepare cylindrical samples (n = 3 x 34) for DTS testing. Results: Powder/liquid ratios ranged from 2.386 to 1.018.The mean ratio (1.644 (341) m/m) was not significantly different from the manufacturer's recommended value of 1.718 (p=0.189). DTS values for the maximum and minimum ratios (m/m), respectively, were both significantly different from each other (p<0.001) and from the mean value obtained from the manufacturer's recommended ratio (m/m) (p<0.001). Conclusions: Variability exists in powder/liquid ratio (m/m) for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.
Resumo:
Developing temperature fields in frozen cheese sauce undergoing microwave heating were simulated and measured. Two scenarios were investigated: a centric and offset placement on the rotating turntable. Numerical modeling was performed using a dedicated electromagnetic Finite Difference Time Domain (FDTD) module that was two-way coupled to the PHYSICA multiphysics package. Two meshes were used: the food material and container were meshed for the heat transfer and the microwave oven cavity and waveguide were meshed for the microwave field. Power densities obtained on the structured FDTD mesh were mapped onto the unstructured finite volume method mesh for each time-step/turntable position. On heating for each specified time-step the temperature field was mapped back onto the FDTD mesh and the electromagnetic properties were updated accordingly. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Detailed comparisons were carried out for the centric and offset placements, comparing experimental temperature profiles during microwave thawing with those obtained by numerical simulation.