928 resultados para Traveling libraries
Resumo:
Major changes to regulations, funding and consumer demand in the Australian aged care industry are driving not for profits in this sector to reshape and rethink the services they offer and the ways in which they deliver their services to consumers. Many not for profit organisations facing these new challenges are also facing organisational cultural barriers in the development and implementation of innovative strategies. This paper presents a case study where one organisation, using design led innovation, explored consumer insights and employee values to find new ways to facilitate change.
Resumo:
This paper presents and discusses organisational barriers and opportunities arising from the dissemination of design led innovation within a leading Australian airport corporation. This research is part of a greater action research program which aims to integrate design as a strategic capability through design led innovation within Australian businesses. Findings reveal that there is an opportunity to employ the theoretical framework and tools of design led innovation in practice to build collaborative idea generation by involving customers and stakeholders within the proposal of new to world propositions. The iterative gathering of deep customer insights also provided an opportunity to leverage a greater understanding of stakeholders and customers in strengthening continuing business partnerships through co-design. Challenges to the design led approach include resistance to the exploratory nature of gathering deep customer insights, the testing of long held assumptions and market data, and the disruption of an organisational mindset geared toward risk aversion instilled within the aviation industry. The implication from these findings is that design led innovation can provide the critical platform to allow for a business to grow and sustain internal design capabilities necessary to challenge prevailing assumptions about how its business model operates to deliver value to customers and stakeholders alike. The platform of design led innovation also provides an avenue to support a cultural transformation towards anticipating future needs necessary for establishing a position of leadership within the broader economic environment.
Resumo:
The mining equipment technology services sector is driven by a reactive and user-centered design approach, with a technological focus on incremental new product development. As Australia moves out of its sustained mining boom, companies need to rethink their strategic position, to become agile to stay relevant in an enigmatic market. This paper reports on the first five months on an embedded case study within an Australian, family-owned mining manufacturer. The first author is currently engaged in a longitudinal design led innovation project, as a catalyst to guide the company’s journey to design integration. The results find that design led innovation could act as a channel for highlighting and exploring company disconnections with the marketplace and offer a customer-centric catalyst for internal change. Data collected for this study is from 12 analysed semistructured interviews, a focus group and a reflective journal, over a five-month period. This paper explores limitations to design integration, and highlights opportunities to explore and leverage entrepreneurial characteristics to stay agile, broaden innovation and future-proof through the next commodity cycle in the mining industry.
De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana
Resumo:
Background: Nicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant's capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection. Methodology/Results: RNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription. Conclusions: The assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant. © 2013 Nakasugi et al.
Resumo:
tRNA-derived RNA fragments (tRFs) are 19mer small RNAs that associate with Argonaute (AGO) proteins in humans. However, in plants, it is unknown if tRFs bind with AGO proteins. Here, using public deep sequencing libraries of immunoprecipitated Argonaute proteins (AGO-IP) and bioinformatics approaches, we identified the Arabidopsis thaliana AGO-IP tRFs. Moreover, using three degradome deep sequencing libraries, we identified four putative tRF targets. The expression pattern of tRFs, based on deep sequencing data, was also analyzed under abiotic and biotic stresses. The results obtained here represent a useful starting point for future studies on tRFs in plants. © 2013 Loss-Morais et al.; licensee BioMed Central Ltd.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Australian Research to Encourage School Students’ Positive Use of Technology to Reduce Cyberbullying
Resumo:
Information and Communications Technology (ICT) has spread rapidly in Australia. Mobile phones, which increasingly have advanced capabilities including Internet access, mobile television and multimedia storage, are owned by 22% of Australian children aged 9-11 years and 73% of those aged 12-14 years (Australian Bureau of Statistics, 2012b), as well as by over 90% of Australians aged 15 years and over(Australian Communications and Media Authority (ACMA), 2010). Nearly 80% of Australian households have access to the Internet and 73% have a broadband Internet connection, ensuring that Internet access is typically reliable and high-speed (Australian Bureau of Statistics, 2012a). Ninety percent of Australian children aged 5-14 years (comprising 79% of 5-8 year olds; 96% of 9-11 year olds; and 98% of 12-14 year olds) reported having accessed the Internet during 2011-2012, a significant increase from 79% in 2008-2009 (Australian Bureau of Statistics, 2012b). Approximately 90% of 5-14 year olds have accessed the Internet both from home and from school, with close to 49% accessing the Internet from other places (Australian Bureau of Statistics, 2012b). Young people often make use of borrowed Internet access (e.g. in friends’ homes), commercial access (e.g. cybercafés), public access (e.g. libraries), and mobile device access in areas offering free Wi-Fi (Lim, 2009).
Resumo:
This paper considers the role of the public library as a community hub, engagement space, and entrepreneurial incubator in the context of the city, city governance, and local government planning. It considers this role from the perspective of library experts and their future visions for libraries in a networked knowledge economy. Public libraries (often operated by or on behalf of local governments) potentially play a pivotal role for local governments in positioning communities within the global digital network. Fourteen qualitative interviews with library experts informed the study which investigates how the relationship between digital technology and the physical library space can potentially support the community to develop innovative, collaborative environments for transitioning to a digital future. The study found that libraries can capitalise on their position as community hubs for two purposes: first, to build vibrant community networks and forge economic links across urban localities; and second, to cross the digital divide and act as places of innovation and lifelong learning. Libraries provide a specific combination of community and technology spaces and have significant tangible connection points in the digital age. The paper further discusses the potential benefits for libraries in using ICT networks and infrastructure, such as the National Broadband Network in Australia. These networks could facilitate greater use of library assets and community knowledge, which, in turn, could assist knowledge economies and regional prosperity.
Resumo:
Due to the demand for better and deeper analysis in sports, organizations (both professional teams and broadcasters) are looking to use spatiotemporal data in the form of player tracking information to obtain an advantage over their competitors. However, due to the large volume of data, its unstructured nature, and lack of associated team activity labels (e.g. strategic/tactical), effective and efficient strategies to deal with such data have yet to be deployed. A bottleneck restricting such solutions is the lack of a suitable representation (i.e. ordering of players) which is immune to the potentially infinite number of possible permutations of player orderings, in addition to the high dimensionality of temporal signal (e.g. a game of soccer last for 90 mins). Leveraging a recent method which utilizes a "role-representation", as well as a feature reduction strategy that uses a spatiotemporal bilinear basis model to form a compact spatiotemporal representation. Using this representation, we find the most likely formation patterns of a team associated with match events across nearly 14 hours of continuous player and ball tracking data in soccer. Additionally, we show that we can accurately segment a match into distinct game phases and detect highlights. (i.e. shots, corners, free-kicks, etc) completely automatically using a decision-tree formulation.
Resumo:
Over the past decade, vision-based tracking systems have been successfully deployed in professional sports such as tennis and cricket for enhanced broadcast visualizations as well as aiding umpiring decisions. Despite the high-level of accuracy of the tracking systems and the sheer volume of spatiotemporal data they generate, the use of this high quality data for quantitative player performance and prediction has been lacking. In this paper, we present a method which predicts the location of a future shot based on the spatiotemporal parameters of the incoming shots (i.e. shot speed, location, angle and feet location) from such a vision system. Having the ability to accurately predict future short-term events has enormous implications in the area of automatic sports broadcasting in addition to coaching and commentary domains. Using Hawk-Eye data from the 2012 Australian Open Men's draw, we utilize a Dynamic Bayesian Network to model player behaviors and use an online model adaptation method to match the player's behavior to enhance shot predictability. To show the utility of our approach, we analyze the shot predictability of the top 3 players seeds in the tournament (Djokovic, Federer and Nadal) as they played the most amounts of games.
Resumo:
Efficient and effective feature detection and representation is an important consideration when processing videos, and a large number of applications such as motion analysis, 3D scene understanding, tracking etc. depend on this. Amongst several feature description methods, local features are becoming increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational complexity, their performance is still too limited for real world applications. Furthermore, rapid increases in the uptake of mobile devices has increased the demand for algorithms that can run with reduced memory and computational requirements. In this paper we propose a semi binary based feature detectordescriptor based on the BRISK detector, which can detect and represent videos with significantly reduced computational requirements, while achieving comparable performance to the state of the art spatio-temporal feature descriptors. First, the BRISK feature detector is applied on a frame by frame basis to detect interest points, then the detected key points are compared against consecutive frames for significant motion. Key points with significant motion are encoded with the BRISK descriptor in the spatial domain and Motion Boundary Histogram in the temporal domain. This descriptor is not only lightweight but also has lower memory requirements because of the binary nature of the BRISK descriptor, allowing the possibility of applications using hand held devices.We evaluate the combination of detectordescriptor performance in the context of action classification with a standard, popular bag-of-features with SVM framework. Experiments are carried out on two popular datasets with varying complexity and we demonstrate comparable performance with other descriptors with reduced computational complexity.
Resumo:
At the highest level of competitive sport, nearly all performances of athletes (both training and competitive) are chronicled using video. Video is then often viewed by expert coaches/analysts who then manually label important performance indicators to gauge performance. Stroke-rate and pacing are important performance measures in swimming, and these are previously digitised manually by a human. This is problematic as annotating large volumes of video can be costly, and time-consuming. Further, since it is difficult to accurately estimate the position of the swimmer at each frame, measures such as stroke rate are generally aggregated over an entire swimming lap. Vision-based techniques which can automatically, objectively and reliably track the swimmer and their location can potentially solve these issues and allow for large-scale analysis of a swimmer across many videos. However, the aquatic environment is challenging due to fluctuations in scene from splashes, reflections and because swimmers are frequently submerged at different points in a race. In this paper, we temporally segment races into distinct and sequential states, and propose a multimodal approach which employs individual detectors tuned to each race state. Our approach allows the swimmer to be located and tracked smoothly in each frame despite a diverse range of constraints. We test our approach on a video dataset compiled at the 2012 Australian Short Course Swimming Championships.
Resumo:
A new community and communication type of social networks - online dating - are gaining momentum. With many people joining in the dating network, users become overwhelmed by choices for an ideal partner. A solution to this problem is providing users with partners recommendation based on their interests and activities. Traditional recommendation methods ignore the users’ needs and provide recommendations equally to all users. In this paper, we propose a recommendation approach that employs different recommendation strategies to different groups of members. A segmentation method using the Gaussian Mixture Model (GMM) is proposed to customize users’ needs. Then a targeted recommendation strategy is applied to each identified segment. Empirical results show that the proposed approach outperforms several existing recommendation methods.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based filtering approach tries to recommend items that are similar to new users' profiles. The fundamental issues include how to profile new users, and how to deal with the over-specialization in content-based recommender systems. Indeed, the terms used to describe items can be formed as a concept hierarchy. Therefore, we aim to describe user profiles or information needs by using concepts vectors. This paper presents a new method to acquire user information needs, which allows new users to describe their preferences on a concept hierarchy rather than rating items. It also develops a new ranking function to recommend items to new users based on their information needs. The proposed approach is evaluated on Amazon book datasets. The experimental results demonstrate that the proposed approach can largely improve the effectiveness of recommender systems.