931 resultados para Transitional phenomena


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the ocean science community, researchers have begun employing novel sensor platforms as integral pieces in oceanographic data collection, which have significantly advanced the study and prediction of complex and dynamic ocean phenomena. These innovative tools are able to provide scientists with data at unprecedented spatiotemporal resolutions. This paper focuses on the newly developed Wave Glider platform from Liquid Robotics. This vehicle produces forward motion by harvesting abundant natural energy from ocean waves, and provides a persistent ocean presence for detailed ocean observation. This study is targeted at determining a kinematic model for offline planning that provides an accurate estimation of the vehicle speed for a desired heading and set of environmental parameters. Given the significant wave height, ocean surface and subsurface currents, wind speed and direction, we present the formulation of a system identification to provide the vehicle’s speed over a range of possible directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural convection thermal boundary layer adjacent to an abruptly heated inclined flat plate is investigated through a scaling analysis and verified by numerical simulations. In general, the development of the thermal flow can be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis and the numerical procedures are described in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural convection thermal boundary layer adjacent to an instantaneous heated inclined flat plate is investigated through a scaling analysis and verified by direct numerical simulations. It is revealed from the analysis that the development of the boundary layer may be characterized by three distinct stages, i.e. a start-up stage, a transitional stage and a steady state stage. These three stages can be clearly identified from the numerical simulations. Major scales including the flow velocity, flow development time, and the thermal and viscous boundary layer thicknesses are established to quantify the flow development at different stages and over a wide range of flow parameters. Details of the scaling analysis are described in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scaling to characterize unsteady boundary layer development for thermo-magnetic convection of paramagnetic fluids with the Prandtl number greater than one is developed. Under the consideration is a square cavity with initially quiescent isothermal fluid placed in microgravity condition (g = 0) and subject to a uniform, vertical gradient magnetic field. A distinct magnetic thermal-boundary layer is produced by sudden imposing of a higher temperature on the vertical sidewall and as an effect of magnetic body force generated on paramagnetic fluid. The transient flow behavior of the resulting boundary layer is shown to be described by three stages: the start-up stage, the transitional stage and the steady state. The scaling is verified by numerical simulations with the magnetic momentum parameter m variation and the parameter γRa variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durland and McCurdy [Durland, J.M., McCurdy, T.H., 1994. Duration-dependent transitions in a Markov model of US GNP growth. Journal of Business and Economic Statistics 12, 279–288] investigated the issue of duration dependence in US business cycle phases using a Markov regime-switching approach, introduced by Hamilton [Hamilton, J., 1989. A new approach to the analysis of time series and the business cycle. Econometrica 57, 357–384] and extended to the case of variable transition parameters by Filardo [Filardo, A.J., 1994. Business cycle phases and their transitional dynamics. Journal of Business and Economic Statistics 12, 299–308]. In Durland and McCurdy’s model duration alone was used as an explanatory variable of the transition probabilities. They found that recessions were duration dependent whilst expansions were not. In this paper, we explicitly incorporate the widely-accepted US business cycle phase change dates as determined by the NBER, and use a state-dependent multinomial Logit modelling framework. The model incorporates both duration and movements in two leading indexes – one designed to have a short lead (SLI) and the other designed to have a longer lead (LLI) – as potential explanatory variables. We find that doing so suggests that current duration is not only a significant determinant of transition out of recessions, but that there is some evidence that it is also weakly significant in the case of expansions. Furthermore, we find that SLI has more informational content for the termination of recessions whilst LLI does so for expansions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unsteady natural convection boundary layer adjacent to an instantaneously heated inclined plate is investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer following instantaneous heating may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. Major scaling relations of the velocity and thicknesses and the flow development time of the natural convection boundary layer are obtained using triple-layer integral solutions and verified by direct numerical simulations over a wide range of flow parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spite of having a long history in education, inquiry teaching (the teaching in ways that foster inquiry based learning in students) in science education is still a highly problematic issue. However, before teacher educators can hope to effectively influence teacher implementation of inquiry teaching in the science classroom, educators need to understand teachers’ current conceptions of inquiry teaching. This study describes the qualitatively different ways in which 20 primary school teachers experienced inquiry teaching in science education. A phenomenographic approach was adopted and data sourced from interviews of these teachers. The three categories of experiences that emerged from this study were; Student Centred Experiences (Category 1), Teacher Generated Problems (Category 2), and Student Generated Questions (Category 3). In Category 1 teachers structure their teaching around students sensory experiences, expecting that students will see, hear, feel and do interesting things that will focus their attention, have them asking science questions, and improve their engagement in learning. In Category 2 teachers structure their teaching around a given problem they have designed and that the students are required to solve. In Category 3 teachers structure their teaching around helping students to ask and answer their own questions about phenomena. These categories describe a hierarchy with the Student Generated Questions Category as the most inclusive. These categories were contrasted with contemporary educational theory, and it was found that when given the chance to voice their own conceptions without such comparison teachers speak of inquiry teaching in only one of the three categories mentioned. These results also help inform our theoretical understanding of teacher conceptions of inquiry teaching. Knowing what teachers actually experience as inquiry teaching, as opposed to understand theoretically, is a valuable contribution to the literature. This knowledge provides a valuable contribution to educational theory, which helps policy, curriculum development, and the practicing primary school teachers to more fully understand and implement the best educative practices in their daily work. Having teachers experience the qualitatively different ways of experiencing inquiry teaching uncovered in this study is expected to help teachers to move towards a more student-centred, authentic inquiry outcome for their students and themselves. Going beyond this to challenge teacher epistemological beliefs regarding the source of knowledge may also assist them in developing more informed notions of the nature of science and of scientific inquiry during professional development opportunities. The development of scientific literacy in students, a high priority for governments worldwide, will only to benefit from these initiatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering how dominant a feature of architectural education the critique has been, and continues to be, little has been written about the affective dimension of engaging students during this key final stage of the design or documentation process. For most students, the critique is unlike any previous educational or life experience that they have ever confronted, and the abrupt change in the instructor’s role, from tutor to judge, can be disconcerting at a time when the student is feeling their most vulnerable. The fact that the period immediately leading up to the critique habitually entails not only a focused and sustained effort, but also sleepless nights of intensive work, further exacerbates this. The purpose of this paper is to recognise the affective phenomena influencing student engagement, during the critique. The participants of this research were second to fourth year architecture students at a major Australian university. Following the implementation of trials in alternative modes of critique in architectural design and technology studios, qualitative data was obtained from students, through questionnaires and interviews. Six indicators of engagement were investigated through this research: motivation and agency, transactional engagement with staff, transactional engagement with students, institutional support, active citizenship, and non-institutional support. This research confirms that affective phenomena play a significant role in the events of the critique; the relationship between instructor and student influences student engagement, as does the choreography and spatial planning of the critique environment; and these factors ultimately have an impact on the depth of student learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we consider how Fractional Differential Equations (FDEs) can be used to study the travelling wave phenomena in parabolic equations. As our method is conducted under intracellular environments that are highly crowded, it was discovered that there is a simple relationship between the travelling wave speed and obstacle density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-segregation and compartimentalisation are observed experimentally to occur spontaneously on live membranes as well as reconstructed model membranes. It is believed that many of these processes are caused or supported by anomalous diffusive behaviours of biomolecules on membranes due to the complex and heterogeneous nature of these environments. These phenomena are on the one hand of great interest in biology, since they may be an important way for biological systems to selectively localize receptors, regulate signaling or modulate kinetics; and on the other, they provide an inspiration for engineering designs that mimick natural systems. We present an interactive software package we are developing for the purpose of simulating such processes numerically using a fundamental Monte Carlo approach. This program includes the ability to simulate kinetics and mass transport in the presence of either mobile or immobile obstacles and other relevant structures such as liquid-ordered lipid microdomains. We also present preliminary simulation results regarding the selective spatial localization and chemical kinetics modulating power of immobile obstacles on the membrane, obtained using the program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of venture idea characteristics and the contextual fit between venture ideas and individuals are key research goals in entrepreneurship (Davidsson, 2004). However, to date there has been limited scholarly attention given to these phenomena. Accordingly, this study aims to help fill the gap by investigating the importance of novelty and relatedness of venture ideas in entrepreneurial firms. On the premise that new venture creation is a process and that research should be focused on the early stages of the venturing process, this study primarily focuses its attention on examining how venture idea novelty and relatedness affect the performance in the venture creation process. Different types and degrees of novelty are considered here. Relatedness is shown to be based on individuals’ prior knowledge and resource endowment. Performance in the venture creation process is evaluated according to four possible outcomes: making progress, getting operational, being terminated and achieving positive cash flow. A theoretical model is developed demonstrating the relationship between these variables along with the investment of time and money. Several hypotheses are developed to be tested. Among them, it is hypothesised that novelty hinders short term performance in the venture creation process. On the other hand knowledge and resource relatedness are hypothesised to promote performance. An experimental study was required in order to understand how different types and degrees of novelty and relatedness of venture ideas affect the attractiveness of venture ideas in the eyes of experienced entrepreneurs. Thus, the empirical work in this thesis was based on two separate studies. In the first one, a conjoint analysis experiment was conducted on 32 experienced entrepreneurs in order to ascertain attitudinal preferences regarding venture idea attractiveness based on novelty, relatedness and potential financial gains. This helped to estimate utility values for different levels of different attributes of venture ideas and their relative importance in the attractiveness. The second study was a longitudinal investigation of how venture idea novelty and relatedness affect the performance in the venture creation process. The data for this study is from the Comprehensive Australian Study for Entrepreneurial Emergence (CAUSEE) project that has been established in order to explore the new venture creation process in Australia. CAUSEE collects data from a representative sample of over 30,000 households in Australia using random digit dialling (RDD) telephone interviews. From these cases, data was collected at two points in time during a 12 month period from 493 firms, who are currently involved in the start-up process. Hypotheses were tested and inferences were derived through descriptive statistics, confirmatory factor analysis and structural equation modelling. Results of study 1 indicate that venture idea characteristics have a role in the attractiveness and entrepreneurs prefer to introduce a moderate degree of novelty across all types of venture ideas concerned. Knowledge relatedness is demonstrated to be a more significant factor in attractiveness than resource relatedness. Results of study 2 show that the novelty hinders nascent venture performance. On the other hand, resource relatedness has a positive impact on performance unlike knowledge relatedness which has none. The results of these studies have important implications for potential entrepreneurs, investors, researchers, consultants etc. by developing a better understanding in the venture creation process and its success factors in terms of both theory and practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agents make up an important part of game worlds, ranging from the characters and monsters that live in the world to the armies that the player controls. Despite their importance, agents in current games rarely display an awareness of their environment or react appropriately, which severely detracts from the believability of the game. Some games have included agents with a basic awareness of other agents, but they are still unaware of important game events or environmental conditions. This paper presents an agent design we have developed, which combines cellular automata for environmental modeling with influence maps for agent decision-making. The agents were implemented into a 3D game environment we have developed, the EmerGEnT system, and tuned through three experiments. The result is simple, flexible game agents that are able to respond to natural phenomena (e.g. rain or fire), while pursuing a goal.