947 resultados para Three-Dimensional Wave
Resumo:
The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.
Resumo:
The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.
Resumo:
Иван Хр. Димовски, Юлиан Ц. Цанков - Предложен е метод за намиране на явни решения на клас двумерни уравнения на топлопроводността с нелокални условия по пространствените променливи. Методът е основан на директно тримерно операционно смятане. Класическата дюамелова конволюция е комбинирана с две некласически конволюции за операторите ∂xx и ∂yy в една тримерна конволюция. Съответното операционно смятане използва мултипликаторни частни. Мултипликаторните частни позволяват да се продължи принципът на Дюамел за пространствените променливи и да се намерят явни решения на разглежданите гранични задачи. Общите разглеждания са приложени в случая на гранични условия от типа на Йонкин. Намерени са експлицитни решения в затворен вид.
Resumo:
Недю Иванов Попиванов, Алексей Йорданов Николов - През 1952 г. М. Протър формулира нови гранични задачи за вълновото уравнение, които са тримерни аналози на задачите на Дарбу в равнината. Задачите са разгледани в тримерна област, ограничена от две характеристични конуса и равнина. Сега, след като са минали повече от 50 години, е добре известно, че за безброй гладки функции в дясната страна на уравнението тези задачи нямат класически решения, а обобщеното решение има силна степенна особеност във върха на характеристичния конус, която е изолирана и не се разпространява по конуса. Тук ние разглеждаме трета гранична задача за вълновото уравнение с младши членове и дясна страна във формата на тригонометричен полином. Дадена е по-нова от досега известната априорна оценка за максимално възможната особеност на решенията на тази задача. Оказва се, че при по-общото уравнение с младши членове възможната сингулярност е от същия ред като при чисто вълновото уравнение.
Resumo:
The transition of laterally heated flows in a vertical layer and in the presence of a streamwise pressure gradient is examined numerically for the case of different values Prandtl number. The stability analysis of the basic flow for the pure hydrodynamic case ( Pr = 0 ) was reported in [1]. We find that in the absence of transverse pumping the previously known critical parameters are recovered [2], while as the strength of the Poiseuille flow component is increased the convective motion is delayed considerably. Following the linear stability analysis for the vertical channel flow our attention is focused on a study of the finite am- plitude secondary travelling-wave (TW) solutions that develop from the perturbations of the transverse roll type imposed on the basic flow and temperature profiles. The linear stability of the secondary TWs against three-dimensional perturbations is also examined and it is shown that the bifurcating tertiary flows are phase-locked to the secondary TWs.
Resumo:
Current reform initiatives recommend that geometry instruction include the study of three-dimensional geometric objects and provide students with opportunities to use spatial skills in problem-solving tasks. Geometer's Sketchpad (GSP) is a dynamic and interactive computer program that enables the user to investigate and explore geometric concepts and manipulate geometric structures. Research using GSP as an instructional tool has focused primarily on teaching and learning two-dimensional geometry. This study explored the effect of a GSP based instructional environment on students' geometric thinking and three-dimensional spatial ability as they used GSP to learn three-dimensional geometry. For 10 weeks, 18 tenth-grade students from an urban school district used GSP to construct and analyze dynamic, two-dimensional representations of three-dimensional objects in a classroom environment that encouraged exploration, discussion, conjecture, and verification. The data were collected primarily from participant observations and clinical interviews and analyzed using qualitative methods of analysis. In addition, pretest and posttest measures of three-dimensional spatial ability and van Hiele level of geometric thinking were obtained. Spatial ability measures were analyzed using standard t-test analysis. ^ The data from this study indicate that GSP is a viable tool to teach students about three-dimensional geometric objects. A comparison of students' pretest and posttest van Hiele levels showed an improvement in geometric thinking, especially for students on lower levels of the van Hiele theory. Evidence at the p < .05 level indicated that students' spatial ability improved significantly. Specifically, the GSP dynamic, visual environment supported students' visualization and reasoning processes as students attempted to solve challenging tasks about three-dimensional geometric objects. The GSP instructional activities also provided students with an experiential base and an intuitive understanding about three-dimensional objects from which more formal work in geometry could be pursued. This study demonstrates that by designing appropriate GSP based instructional environments, it is possible to help students improve their spatial skills, develop more coherent and accurate intuitions about three-dimensional geometric objects, and progress through the levels of geometric thinking proposed by van Hiele. ^
Resumo:
Reliability and sensitive information protection are critical aspects of integrated circuits. A novel technique using near-field evanescent wave coupling from two subwavelength gratings (SWGs), with the input laser source delivered through an optical fiber is presented for tamper evidence of electronic components. The first grating of the pair of coupled subwavelength gratings (CSWGs) was milled directly on the output facet of the silica fiber using focused ion beam (FIB) etching. The second grating was patterned using e-beam lithography and etched into a glass substrate using reactive ion etching (RIE). The slightest intrusion attempt would separate the CSWGs and eliminate near-field coupling between the gratings. Tampering, therefore, would become evident. Computer simulations guided the design for optimal operation of the security solution. The physical dimensions of the SWGs, i.e. period and thickness, were optimized, for a 650 nm illuminating wavelength. The optimal dimensions resulted in a 560 nm grating period for the first grating etched in the silica optical fiber and 420 nm for the second grating etched in borosilicate glass. The incident light beam had a half-width at half-maximum (HWHM) of at least 7 µm to allow discernible higher transmission orders, and a HWHM of 28 µm for minimum noise. The minimum number of individual grating lines present on the optical fiber facet was identified as 15 lines. Grating rotation due to the cylindrical geometry of the fiber resulted in a rotation of the far-field pattern, corresponding to the rotation angle of moiré fringes. With the goal of later adding authentication to tamper evidence, the concept of CSWGs signature was also modeled by introducing random and planned variations in the glass grating. The fiber was placed on a stage supported by a nanomanipulator, which permitted three-dimensional displacement while maintaining the fiber tip normal to the surface of the glass substrate. A 650 nm diode laser was fixed to a translation mount that transmitted the light source through the optical fiber, and the output intensity was measured using a silicon photodiode. The evanescent wave coupling output results for the CSWGs were measured and compared to the simulation results.
Resumo:
Electromagnetic waves in suburban environment encounter multiple obstructions that shadow the signal. These waves are scattered and random in polarization. They take multiple paths that add as vectors at the portable device. Buildings have vertical and horizontal edges. Diffraction from edges has polarization dependent characteristics. In practical case, a signal transmitted from a vertically polarized high antenna will result in a significant fraction of total power in the horizontal polarization at the street level. Signal reception can be improved whenever there is a probability of receiving the signal in at least two independent ways or branches. The Finite-Difference Time-Domain (FDTD) method was applied to obtain the two and three-dimensional dyadic diffraction coefficients (soft and hard) of right-angle perfect electric conductor (PEC) wedges illuminated by a plane wave. The FDTD results were in good agreement with the asymptotic solutions obtained using Uniform Theory of Diffraction (UTD). Further, a material wedge replaced the PEC wedge and the dyadic diffraction coefficient for the same was obtained.
Resumo:
The nonlinear interaction between light and atoms is an extensive field of study with a broad range of applications in quantum information science and condensed matter physics. Nonlinear optical phenomena occurring in cold atoms are particularly interesting because such slowly moving atoms can spatially organize into density gratings, which allows for studies involving optical interactions with structured materials. In this thesis, I describe a novel nonlinear optical effect that arises when cold atoms spatially bunch in an optical lattice. I show that employing this spatial atomic bunching provides access to a unique physical regime with reduced thresholds for nonlinear optical processes and enhanced material properties. Using this method, I observe the nonlinear optical phenomenon of transverse optical pattern formation at record-low powers. These transverse optical patterns are generated by a wave- mixing process that is mediated by the cold atomic vapor. The optical patterns are highly multimode and induce rich non-equilibrium atomic dynamics. In particular, I find that there exists a synergistic interplay between the generated optical pat- terns and the atoms, wherein the scattered fields help the atoms to self-organize into new, multimode structures that are not externally imposed on the atomic sample. These self-organized structures in turn enhance the power in the optical patterns. I provide the first detailed investigation of the motional dynamics of atoms that have self-organized in a multimode geometry. I also show that the transverse optical patterns induce Sisyphus cooling in all three spatial dimensions, which is the first observation of spontaneous three-dimensional cooling. My experiment represents a unique means by which to study nonlinear optics and non-equilibrium dynamics at ultra-low required powers.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Background: Athletic groin pain (AGP) is prevalent in sports involving repeated accelerations, decelerations, kicking and change-of-direction movements. Clinical and radiological examinations lack the ability to assess pathomechanics of AGP, but three-dimensional biomechanical movement analysis may be an important innovation. Aim: The primary aim was to describe and analyse movements used by patients with AGP during a maximum effort change-of-direction task. The secondary aim was to determine if specific anatomical diagnoses were related to a distinct movement strategy. Methods: 322 athletes with a current symptom of chronic AGP participated. Structured and standardised clinical assessments and radiological examinations were performed on all participants. Additionally, each participant performed multiple repetitions of a planned maximum effort change-of-direction task during which whole body kinematics were recorded. Kinematic and kinetic data were examined using continuous waveform analysis techniques in combination with a subgroup design that used gap statistic and hierarchical clustering. Results: Three subgroups (clusters) were identified. Kinematic and kinetic measures of the clusters differed strongly in patterns observed in thorax, pelvis, hip, knee and ankle. Cluster 1 (40%) was characterised by increased ankle eversion, external rotation and knee internal rotation and greater knee work. Cluster 2 (15%) was characterised by increased hip flexion, pelvis contralateral drop, thorax tilt and increased hip work. Cluster 3 (45%) was characterised by high ankle dorsiflexion, thorax contralateral drop, ankle work and prolonged ground contact time. No correlation was observed between movement clusters and clinically palpated location of the participant's pain. Conclusions: We identified three distinct movement strategies among athletes with long-standing groin pain during a maximum effort change-of-direction task. These movement strategies were not related to clinical assessment findings but highlighted targets for rehabilitation in response to possible propagative mechanisms. Trial registration number NCT02437942, pre results.
Resumo:
The industrial production of aluminium is an electrolysis process where two superposed horizontal liquid layers are subjected to a mainly vertical electric current supplied by carbon electrodes. The lower layer consists of molten aluminium and lies on the cathode. The upper layer is the electrolyte and is covered by the anode. The interface between the two layers is often perturbed, leading to oscillations, or waves, similar to the waves on the surface of seas or lakes. The presence of electric currents and the resulting magnetic field are responsible for electromagnetic (Lorentz) forces within the fluid, which can amplify these oscillations and have an adverse influence on the process. The electrolytic bath vertical to horizontal aspect ratio is such, that it is advantageous to use the shallow water equations to model the interface motion. These are the depth-averaging the Navier-Stokes equations so that nonlinear and dispersion terms may be taken into account. Although these terms are essential to the prediction of wave dynamics, they are neglected in most of the literature on interface instabilities in aluminium reduction cells where only the linear theory is usually considered. The unknown variables are the two horizontal components of the fluid velocity, the height of the interface and the electric potential. In this application, a finite volume resolution of the double-layer shallow water equations including the electromagnetic sources has been developed, for incorporation into a generic three-dimensional computational fluid dynamics code that also deals with heat transfer within the cell.
Resumo:
The thesis uses a three-dimensional, first-principles model of the ionosphere in combination with High Frequency (HF) raytracing model to address key topics related to the physics of HF propagation and artificial ionospheric heating. In particular: 1. Explores the effect of the ubiquitous electron density gradients caused by Medium Scale Traveling Ionospheric Disturbances (MSTIDs) on high-angle of incidence HF radio wave propagation. Previous studies neglected the all-important presence of horizontal gradients in both the cross- and down-range directions, which refract the HF waves, significantly changing their path through the ionosphere. The physics-based ionosphere model SAMI3/ESF is used to generate a self-consistently evolving MSTID that allows for the examination of the spatio-temporal progression of the HF radio waves in the ionosphere. 2. Tests the potential and determines engineering requirements for ground- based high power HF heaters to trigger and control the evolution of Equatorial Spread F (ESF). Interference from ESF on radio wave propagation through the ionosphere remains a critical issue on HF systems reliability. Artificial HF heating has been shown to create plasma density cavities in the ionosphere similar to those that may trigger ESF bubbles. The work explores whether HF heating may trigger or control ESF bubbles. 3. Uses the combined ionosphere and HF raytracing models to create the first self-consistent HF Heating model. This model is utilized to simulate results from an Arecibo experiment and to provide understanding of the physical mechanism behind observed phenomena. The insights gained provide engineering guidance for new artificial heaters that are being built for use in low to middle latitude regions. In accomplishing the above topics: (i) I generated a model MSTID using the SAMI3/ESF code, and used a raytrace model to examine the effects of the MSTID gradients on radio wave propagation observables; (ii) I implemented a three- dimensional HF heating model in SAMI3/ESF and used the model to determine whether HF heating could artificially generate an ESF bubble; (iii) I created the first self-consistent model for artificial HF heating using the SAMI3/ESF ionosphere model and the MoJo raytrace model and ran a series of simulations that successfully modeled the results of early artificial heating experiments at Arecibo.
Resumo:
Os oceanos representam um dos maiores recursos naturais, possuindo expressivo potencial energético, podendo suprir parte da demanda energética mundial. Nas últimas décadas, alguns dispositivos destinados à conversão da energia das ondas dos oceanos em energia elétrica têm sido estudados. No presente trabalho, o princípio de funcionamento do conversor do tipo Coluna de Água Oscilante, do inglês Oscillating Water Colum, (OWC) foi analisado numericamente. As ondas incidentes na câmara hidro-pneumática da OWC, causam um movimento alternado da coluna de água no interior da câmara, o qual produz um fluxo alternado de ar que passa pela chaminé. O ar passa e aciona uma turbina a qual transmite energia para um gerador elétrico. O objetivo do presente estudo foi investigar a influência de diferentes formas geométricas da câmara sobre o fluxo resultante de ar que passa pela turbina, que influencia no desempenho do dispositivo. Para isso, geometrias diferentes para o conversor foram analisadas empregando modelos computacionais 2D e 3D. Um modelo computacional desenvolvido nos softwares GAMBIT e FLUENT foi utilizado, em que o conversor OWC foi acoplado a um tanque de ondas. O método Volume of Fluid (VOF) e a teoria de 2ª ordem Stokes foram utilizados para gerar ondas regulares, permitindo uma interação mais realista entre o conversor, água, ar e OWC. O Método dos Volumes Finitos (MVF) foi utilizado para a discretização das equações governantes. Neste trabalho o Contructal Design (baseado na Teoria Constructal) foi aplicado pela primeira vez em estudos numéricos tridimensionais de OWC para fim de encontrar uma geometria que mais favorece o desempenho do dispositivo. A função objetivo foi a maximização da vazão mássica de ar que passa através da chaminé do dispositivo OWC, analisado através do método mínimos quadrados, do inglês Root Mean Square (RMS). Os resultados indicaram que a forma geométrica da câmara influencia na transformação da energia das ondas em energia elétrica. As geometrias das câmaras analisadas que apresentaram maior área da face de incidência das ondas (sendo altura constante), apresentaram também maior desempenho do conversor OWC. A melhor geometria, entre os casos desse estudo, ofereceu um ganho no desempenho do dispositivo em torno de 30% maior.