1000 resultados para Thermal poling
Resumo:
The upconversion properties of Er3+-doped heavy metal oxyfluoride germanate glasses under 975 nm excitation have been investigated. The intense green (551 and 529 nm) and relatively weak red (657 nm) emissions corresponding to the transitions S-4(3/2) -> I-4(15/2), H-2(11/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The content of PbF2 has an important influence on the upconversion luminescence emission. With increasing content of PbF2, the intensities of green (529 nm) and red (657 nm) emissions increase slightly, while the green emission (551 nm) increases markedly. These results suggest that PbF2 has an influence on the green (551 nm) emission more than on the green (529 nm) and red (657 nm) emissions.
Resumo:
A systematic investigation on glass formation in the PbF2-InF3-BaHPO4 ternary system has been carried out. These glasses have characterized by IR spectra, Raman spectra and differential thermal analysis. The results show that the structure of these glasses is mainly affected by BaHPO4 and InF3 contents. With decreasing BaHPO4 content, the glass structure gradually transforms from metaphosphate to polyphosphate. When InF3 content is low, it mainly acts as network modifier, when its content is high; it enters glass matrix and forms In(O,F)(6) groups connecting the polymerized phosphorus oxygen species. PbF2 mainly acts as network modifier in this system. Systematic variations of the glass transition temperature and the thermal stability index agree well with these results. The most stable glass with Delta T = 230 degrees C and S = 21.79 K is obtained. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped TeO2-based oxysulfide glasses have been prepared in argon atmosphere in carbon crucibles. The thermal analysis and spectroscopic properties of Er (3+) have been considered in terms of sulfide influence. As a function of composition, we have principally measured optical absorption, spontaneous emission and lifetime measurements. Judd-Ofelt theory was introduced to calculate bandwidth and emission cross-section. The results show the product FVMM x sigma(c) increase from 476.8 8 to 635.04 10(-21) cm(2) nm evidently with the addition of 10 mol% PbS into tellurite glass, which indicates a perfect effect on spectra property of Er3+ ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Bulk-lasses have been prepared in the TeO2-ZnO-ZnCl2 systems. Their characteristic temperatures were determined and analyzed. Raman and FT-IR spectra were used to analyze the effect of ZnCl2 on the structure and spectral properties of tellurite glasses and OH- groups in this glass system. The spectroscopic properties including absorption spectra, emission cross-sections and fluorescence lifetimes of Yb3+ in TeO2-ZnO-ZnCl2 were measured and calculated. It is demonstrated that the progressive replacement less than 20 mol% of TeO2 by ZnCl2 improves the thermal stability, removes the OH- groups, turns TeO4 bipyramidal arrangement into TeO3 (and/or TeO3+1) trigonal pyramids structures and results in the decrease of the symmetry of the structure, which increases the emission cross-sections and lifetimes. But when the content of ZnCl2 up to 30 mol%, the glass system becomes more hygroscopic and introduces more OH- groups, which decrease the emission cross-sections and shorten the lifetimes. The results show that the glass system with (TeO2)-Te-69-(ZnO)-Zn-10-20ZnCl(2)-1Yb(2)O(3) is a desirable component for active laser media for high power generation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The physical and thermal properties Of P2O5-Al2O3-BaO-La2O3 glasses were investigated. The effects of glass compositions on the transition temperature, thermal expansion coefficient, density, hardness and refractive index of glasses were studied. The highest hardness of the glasses is 4143.891 MPa and the lowest thermal expansion coefficient of the glasses is 71.770 x 10(-7)/° C. A phosphate glass with high mechanical strength and good thermal characteristic is obtained.
Resumo:
Yb3+Er3+-codoped chloride-modified germanate-bismuth-lead glasses have been synthesized by the conventional melting and quenching method. Structural and thermal stability properties have been obtained on the basis of the Raman spectra and differential thermal analysis, which indicate that the PbCl2 addition has an important influence on the phonon density of states, maximum phonon energy, and thermal stability of host glasses. The Judd-Ofelt intensity parameters and quantum efficiencies were calculated on the basis of the Judd-Ofelt theory and lifetime measurements. For the 1.53 mu m emission band, the full widths at the half-maximum increase and peak wavelengths are blueshifted with increasing PbCl2 content. Moreover, the effect of the PbCl2 addition on the phonon density of states, OH- content, and upconversion luminescence has been discussed and evaluated. Our results reveal that, with increasing PbCl2 content, the decrease of phonon density and OH- content contributes more to the enhanced upconversion emissions than that of maximum phonon energy. (c) 2005 Optical Society of America
Resumo:
Tungsten-tellurite glass with molar composition of 60TeO(2)-30WO(3)-10Na(2)O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass have been discussed. The results show that the introduction Of WO3 increases significantly the glass transition temperature and the maximum phonon energy. Er3+-doped tungsten-tellurite glass exhibits high glass transition temperature (377 degrees C), large emission cross-section (0.91 x 10(-20) cm(2)) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er3+-doped waveguide amplifier application. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Divalent metal fluorides MF2 (M=Sr, Mg, Ca) in oxyfluoride tellurite glasses TeO2-BaF2-LaF3 were synthesized. The densities, refractive indices and characteristic temperatures of synthesized glasses were measured. The influence of divalent metal fluorides MF2 (M=Sr, Mg, Ca) on the thermal stability of oxyfluoride tellurite glasses TeO2-BaF2-LaF3 were studied. Results show that the replacement of BaF2 by SrF2 and MgF2 can enhance the thermal stability against crystallization of the glass. A glass system with good thermal stability was produced, which could be a potential candidate for the host materials of the fiber devices.
Thermal stability and frequency up-conversion properties of Er3+-doped oxyfluoride tellurite glasses
Resumo:
A comprehensive study on the thermal stability and spectroscopic properties of Er3+/Yb3+-codoped Al(PO3)(3)-based fluorophosphate glasses is reported of the 1.5μ m fibre amplifiers in this paper. From optical absorption spectra, the Judd-Ofelt parameters of Er3+ in the glasses and several important optical properties, such as the radiative transition probability, the branching ratio and the spontaneous emission probability, have been calculated by using Judd-Ofelt theory. The fluorophosphate glass exhibits broadband near-infrared emission at 1.53μ m with a full width at half-maximum over 63nm, and a large calculated stimulated-emission cross-section of 6.85 x 10(-21)cm(2).
Resumo:
The thermal stability and structure of RF-RF2-AIF(3)-Al(PO3)(3) fluorophosphate glasses were investigated. Analyses of infrared absorbance spectra and Raman spectra reveal that with increasing number of alkali and alkaline earth fluoride components, the sum of P-O-P bond and O-P-O bond increases and glass network is strengthened. Consequently, the inhibition to nucleation and crystallization processes is improved, which is proved by the increment of thermal stability factors AT and S determined by differential scanning calorimetry. In addition, it was found that LiF has poor ability to form glass in univalent alkali fluorides and MgF2 has comparative strong ability to form glass in bivalent alkaline earth fluorides. (c) 2006 Published by Elsevier B.V.
Resumo:
Tm3+-Yb3+ codoped oxyfluoride silicate glasses suitable for upconversion laser has been fabricated. In this paper, effect of CdF2 addition on thermal stability and upconversion luminescence properties in Tm3+-Yb3+ codoped oxyfluoride silicate glasses have been systematically investigated. The experimental results indicate that, with the substitution CdF2 for PbF2, the glass thermal stability increases and the UV cutoff edge moves to short-wave band slightly. With increasing CdF2 content, the blue and red upconversion luminescence intensity increases slightly at first, and then increases rapidly. While the near infrared (NIR) upconversion emission intensity increases notably at first and then increases slightly. However, the blue and NIR luminescence intensity are much stronger than that of red, indicating these oxyfluoride silicate glasses are more preferable for blue and NIR emissions than red emission. The possible upconversion mechanisms for the blue, red and NIR fluorescence are also estimated and evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
GeGaSKBr glass with Bi ions as emission centers were fabricated. An intense emission centered at around 1230 nm with the width of more than 175 nm was observed by 808 nm photo-excitation of the glass. Lower quenching rate and thermal treatment promote micro-crystallization process, thus strengthening the emission. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.