951 resultados para THREE-DIMENSIONAL SYSTEM
Resumo:
Cultural heritage has arousing the interest of the general public (e.g. tourists), resulting in the increasing number of visitations to archaeological sites. However, many buildings and monuments are severely damaged or completely destroyed, which doesn’t allow to get a full experience of “travelling in time”. Over the years, several Augmented Reality (AR) approaches were proposed to overcome these issues by providing three-dimensional visualization of reconstructed ancient structures in situ. However, most of these systems were made available through heavy and expensive technological bundles. Alternatively, MixAR intends to be a lightweight and cost-effective Mixed Reality system which aims to provide the visualization of virtual ancient buildings reconstructions in situ, properly superimposed and aligned with real-world ruins. This paper proposes and compares different AR mobile units setups to be used in the MixAR system, with low-cost and lightweight requirements in mind, providing different levels of immersion. It was propounded four different mobile units, based on: a laptop computer, a single-board computer (SBC), a tablet and a smartphone, which underwent a set of tests to evaluate their performances. The results show that mobile units based on laptop computer and SBC reached a good overall performance while mobile units based on tablet and smartphone did not meet such a satisfactory result even though they are acceptable for the intended use.
Resumo:
On assistive technology targeted for people with activity limitations and participation, usability issues becomes an essential tool to ensure that the product has the appropriate ergonomics characteristics, in other words, ensure that it fits the specific user´s needs. The aim of this study was to analyze the usability of an adaptive seating device for children with neuromotor impairments, by using kinematic indicators of the reaching movement. The study sample consisted of 13 children with associated neurologic conditions. The tests were developed by using a wooden bench height adjustable, integrated with the adaptive seating device under study, and a system to capture three-dimensional image, called Qualisys Track Manager. The following reaching kinematics variables were measured: maximum reaching velocity, movement duration, index of curvature, and unit movements. It was found that the use of the adaptive seating device had a positive impact on upper limb function in children with neuromotor impairments. It was also noticed an improvement in the reaching movement kinematics, which was statistical significant for the index of curvature and unit movements. As main conclusions, it is possible to point out some positive effects that the product under study seems to have on users' movements, such as the improved movement quality of the upper limb, which could mean a better postural adjustments and higher trunk postural control. By identifying new measures of usability in terms of effectiveness and efficiency for the analyzeddevice, the results obtained may serve also as performance indicators, providing new data that may help to improve the product and eventually modifying it, in order to turn it more compatible with the needs of the considered target population.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
PhD in Chemical and Biological Engineering
Resumo:
The potential of ochratoxin A (OTA) to damage brain cells was studied by using a three-dimensional cell culture system as model for the developing brain. Aggregating cell cultures of foetal rat telencephalon were tested either during an early developmental period, or during a phase of advanced maturation, over a wide range of OTA concentrations (0.4 nM to 50 microM). By monitoring changes in activities of cell type-specific enzymes (ChAt and GAD, for cholinergic and GABAergic neurones, respectively, GS for astrocytes and CNP for oligodendrocytes), the concentration-dependent toxicity and neurodevelopmental effects of OTA were determined. OTA proved to be highly toxic, since a 10-day treatment at 50 nM caused a general cytotoxicity in both mature and immature cultures. At 10 nM of OTA, cell type-specific effects were observed: in immature cultures, a loss in neuronal and oligodendroglial enzyme activities, and an increase in the activity of the astroglial marker glutamine synthetase were found, Furthermore, at 2 and 10 nM of OTA, a clustering of microglial cells was observed. In mature cultures, OTA was somewhat less potent, but caused a similar pattern of toxic effects. A 24 h-treatment with OTA resulted in a concentration-dependent decrease in protein synthesis, with IC50 values of 25 nM and 33 nM for immature and mature cultures respectively. Acute (24 h) treatment at high OTA concentrations (10 to 50 microM) caused a significant increase in reactive oxygen species formation, as measured by the intracellular oxidation of 2',7'-dichlorofluorescin. These results suggest that OTA has the potential to be a potent toxicant to brain cells, and that its effects at nanomolar concentrations are primarily due to the inhibition of protein synthesis, whereas ROS seem not to be involved in the toxicity mediated by a chronic exposure to OTA at such low concentrations.
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
AbstractBreast cancer is one of the most common cancers affecting one in eight women during their lives. Survival rates have increased steadily thanks to early diagnosis with mammography screening and more efficient treatment strategies. Post-operative radiation therapy is a standard of care in the management of breast cancer and has been shown to reduce efficiently both local recurrence rate and breast cancer mortality. Radiation therapy is however associated with some late effects for long-term survivors. Radiation-induced secondary cancer is a relatively rare but severe late effect of radiation therapy. Currently, radiotherapy plans are essentially optimized to maximize tumor control and minimize late deterministic effects (tissue reactions) that are mainly associated with high doses (» 1 Gy). With improved cure rates and new radiation therapy technologies, it is also important to evaluate and minimize secondary cancer risks for different treatment techniques. This is a particularly challenging task due to the large uncertainties in the dose-response relationship.In contrast with late deterministic effects, secondary cancers may be associated with much lower doses and therefore out-of-field doses (also called peripheral doses) that are typically inferior to 1 Gy need to be determined accurately. Out-of-field doses result from patient scatter and head scatter from the treatment unit. These doses are particularly challenging to compute and we characterized it by Monte Carlo (MC) calculation. A detailed MC model of the Siemens Primus linear accelerator has been thoroughly validated with measurements. We investigated the accuracy of such a model for retrospective dosimetry in epidemiological studies on secondary cancers. Considering that patients in such large studies could be treated on a variety of machines, we assessed the uncertainty in reconstructed peripheral dose due to the variability of peripheral dose among various linac geometries. For large open fields (> 10x10 cm2), the uncertainty would be less than 50%, but for small fields and wedged fields the uncertainty in reconstructed dose could rise up to a factor of 10. It was concluded that such a model could be used for conventional treatments using large open fields only.The MC model of the Siemens Primus linac was then used to compare out-of-field doses for different treatment techniques in a female whole-body CT-based phantom. Current techniques such as conformai wedged-based radiotherapy and hybrid IMRT were investigated and compared to older two-dimensional radiotherapy techniques. MC doses were also compared to those of a commercial Treatment Planning System (TPS). While the TPS is routinely used to determine the dose to the contralateral breast and the ipsilateral lung which are mostly out of the treatment fields, we have shown that these doses may be highly inaccurate depending on the treatment technique investigated. MC shows that hybrid IMRT is dosimetrically similar to three-dimensional wedge-based radiotherapy within the field, but offers substantially reduced doses to out-of-field healthy organs.Finally, many different approaches to risk estimations extracted from the literature were applied to the calculated MC dose distribution. Absolute risks varied substantially as did the ratio of risk between two treatment techniques, reflecting the large uncertainties involved with current risk models. Despite all these uncertainties, the hybrid IMRT investigated resulted in systematically lower cancer risks than any of the other treatment techniques. More epidemiological studies with accurate dosimetry are required in the future to construct robust risk models. In the meantime, any treatment strategy that reduces out-of-field doses to healthy organs should be investigated. Electron radiotherapy might offer interesting possibilities with this regard.RésuméLe cancer du sein affecte une femme sur huit au cours de sa vie. Grâce au dépistage précoce et à des thérapies de plus en plus efficaces, le taux de guérison a augmenté au cours du temps. La radiothérapie postopératoire joue un rôle important dans le traitement du cancer du sein en réduisant le taux de récidive et la mortalité. Malheureusement, la radiothérapie peut aussi induire des toxicités tardives chez les patients guéris. En particulier, les cancers secondaires radio-induits sont une complication rare mais sévère de la radiothérapie. En routine clinique, les plans de radiothérapie sont essentiellement optimisées pour un contrôle local le plus élevé possible tout en minimisant les réactions tissulaires tardives qui sont essentiellement associées avec des hautes doses (» 1 Gy). Toutefois, avec l'introduction de différentes nouvelles techniques et avec l'augmentation des taux de survie, il devient impératif d'évaluer et de minimiser les risques de cancer secondaire pour différentes techniques de traitement. Une telle évaluation du risque est une tâche ardue étant donné les nombreuses incertitudes liées à la relation dose-risque.Contrairement aux effets tissulaires, les cancers secondaires peuvent aussi être induits par des basses doses dans des organes qui se trouvent hors des champs d'irradiation. Ces organes reçoivent des doses périphériques typiquement inférieures à 1 Gy qui résultent du diffusé du patient et du diffusé de l'accélérateur. Ces doses sont difficiles à calculer précisément, mais les algorithmes Monte Carlo (MC) permettent de les estimer avec une bonne précision. Un modèle MC détaillé de l'accélérateur Primus de Siemens a été élaboré et validé avec des mesures. La précision de ce modèle a également été déterminée pour la reconstruction de dose en épidémiologie. Si on considère que les patients inclus dans de larges cohortes sont traités sur une variété de machines, l'incertitude dans la reconstruction de dose périphérique a été étudiée en fonction de la variabilité de la dose périphérique pour différents types d'accélérateurs. Pour de grands champs (> 10x10 cm ), l'incertitude est inférieure à 50%, mais pour de petits champs et des champs filtrés, l'incertitude de la dose peut monter jusqu'à un facteur 10. En conclusion, un tel modèle ne peut être utilisé que pour les traitements conventionnels utilisant des grands champs.Le modèle MC de l'accélérateur Primus a été utilisé ensuite pour déterminer la dose périphérique pour différentes techniques dans un fantôme corps entier basé sur des coupes CT d'une patiente. Les techniques actuelles utilisant des champs filtrés ou encore l'IMRT hybride ont été étudiées et comparées par rapport aux techniques plus anciennes. Les doses calculées par MC ont été comparées à celles obtenues d'un logiciel de planification commercial (TPS). Alors que le TPS est utilisé en routine pour déterminer la dose au sein contralatéral et au poumon ipsilatéral qui sont principalement hors des faisceaux, nous avons montré que ces doses peuvent être plus ou moins précises selon la technTque étudiée. Les calculs MC montrent que la technique IMRT est dosimétriquement équivalente à celle basée sur des champs filtrés à l'intérieur des champs de traitement, mais offre une réduction importante de la dose aux organes périphériques.Finalement différents modèles de risque ont été étudiés sur la base des distributions de dose calculées par MC. Les risques absolus et le rapport des risques entre deux techniques de traitement varient grandement, ce qui reflète les grandes incertitudes liées aux différents modèles de risque. Malgré ces incertitudes, on a pu montrer que la technique IMRT offrait une réduction du risque systématique par rapport aux autres techniques. En attendant des données épidémiologiques supplémentaires sur la relation dose-risque, toute technique offrant une réduction des doses périphériques aux organes sains mérite d'être étudiée. La radiothérapie avec des électrons offre à ce titre des possibilités intéressantes.
Resumo:
The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m?2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008?May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m?year?1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.
Resumo:
In recent years, modern techniques of medical imaging such as MDCT (multidetector-computed tomography) and MRI (magnetic resonance imaging) have pioneered post mortem (pm) investigations, especially in forensic medicine. Particularly pm angiography permits investigating the vascular system in a way which is not possible by performing only conventional autopsy. Beside these radiological methods, other modem visualizing techniques like the three dimensional (3D) surface scan have been implemented in order perform reconstructions of complex cases. By the use of pm imaging techniques, more objective and accurate documentations can be realized that permit an increase of quality in forensic investigations.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.
Resumo:
The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growth.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Dublin Institute for Advanced Studies, Irlanda, entre setembre i desembre del 2009.En els últims anys s’ha realitzat un important avanç en la modelització tridimensional en magnetotel•lúrica (MT) gracies a l'augment d’algorismes d’inversió tridimensional disponibles. Aquests codis utilitzen diferents formulacions del problema (diferències finites, elements finits o equacions integrals), diverses orientacions del sistema de coordenades i, o bé en el conveni de signe, més o menys, en la dependència temporal. Tanmateix, les impedàncies resultants per a tots els valors d'aquests codis han de ser les mateixes una vegada que es converteixen a un conveni de signe comú i al mateix sistema de coordenades. Per comparar els resultats dels diferents codis hem dissenyat models diferents de resistivitats amb estructures tridimensional incrustades en un subsòl homogeni. Un requisit fonamental d’aquests models és que generin impedàncies amb valors importants en els elements de la diagonal, que no són menyspreables. A diferència dels casos del modelització de dades magnetotel.lúriques unidimensionals i bidimensionals, pel al cas tridimensional aquests elements de les diagonals del tensor d'impedància porten informació sobre l'estructura de la resistivitat. Un dels models de terreny s'utilitza per comparar els diferents algoritmes que és la base per posterior inversió dels diferents codis. Aquesta comparació va ser seguida de la inversió per recuperar el conjunt de dades d'una estructura coneguda.
Resumo:
The incidence of neurodegenerative disease like Parkinson's disease and Alzheimer's disease (AD) increases dramatically with age; only a small percentage is directly related to familial forms. The etiology of the most abundant, sporadic forms is complex and multifactorial, involving both genetic and environmental factors. Several environmental pollutants have been associated with neurodegenerative disorders. The present article focuses on results obtained in experimental neurotoxicology studies that indicate a potential pathogenic role of lead and mercury in the development of neurodegenerative diseases. Both heavy metals have been shown to interfere with a multitude of intracellular targets, thereby contributing to several pathogenic processes typical of neurodegenerative disorders, including mitochondrial dysfunction, oxidative stress, deregulation of protein turnover, and brain inflammation. Exposure to heavy metals early in development can precondition the brain for developing a neurodegenerative disease later in life. Alternatively, heavy metals can exert their adverse effects through acute neurotoxicity or through slow accumulation during prolonged periods of life. The pro-oxidant effects of heavy metals can exacerbate the age-related increase in oxidative stress that is related to the decline of the antioxidant defense systems. Brain inflammatory reactions also generate oxidative stress. Chronic inflammation can contribute to the formation of the senile plaques that are typical for AD. In accord with this view, nonsteroidal anti-inflammatory drugs and antioxidants suppress early pathogenic processes leading to Alzheimer's disease, thus decreasing the risk of developing the disease. The effects of lead and mercury were also tested in aggregating brain-cell cultures of fetal rat telencephalon, a three-dimensional brain-cell culture system. The continuous application for 10 to 50 days of non-cytotoxic concentrations of heavy metals resulted in their accumulation in brain cells and the occurrence of delayed toxic effects. When applied at non-toxic concentrations, methylmercury, the most common environmental form of mercury, becomes neurotoxic under pro-oxidant conditions. Furthermore, lead and mercury induce glial cell reactivity, a hallmark of brain inflammation. Both mercury and lead increase the expression of the amyloid precursor protein; mercury also stimulates the formation of insoluble beta-amyloid, which plays a crucial role in the pathogenesis of AD and causes oxidative stress and neurotoxicity in vitro. Taken together, a considerable body of evidence suggests that the heavy metals lead and mercury contribute to the etiology of neurodegenerative diseases and emphasizes the importance of taking preventive measures in this regard.