957 resultados para Surface reaction mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of Bronsted acidity of titanium silicalite zeolite (with different ratios of Si/Ti) in oxidation reactions of styrene has been investigated and discussed. For zeolites with Si/Ti > 42, most of the titanium is in the zeolite framework. These framework titanium species, which act both as the isolated titanium centers and as Bronsted acidity centers (together with the Bronsted acidity produced by the tetrahedral aluminum impurity introduced during synthesis), can catalyze both the epoxidation and the succeeding rearrangement reactions, thus promoting the formation of phenylacetaldehyde. With an increase in the titanium content of the zeolite, titanium will tend to stay outside the zeolite lattice, except for the TiOx nanophases which can be occluded in the zeolite channels or on the external surface. These non-framework titanium species are favorable for the carbon-carbon bond scission, leading to the production of additional benzaldehyde. The catalytic performances of these zeolites with different Si/Ti ratios are correlated here with their structural information by using solid-state NMR and UV-Vis methods. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent IR spectroscopic studies on the surface properties of fresh Mo2N/gamma-Al2O3 catalyst are presented in this paper. The surface sites of fresh Mo2N/gamma-Al2O3, both Modelta+ (0<δ<2) and N sites, are probed by CO adsorption. Two characteristic IR bands were observed at 2045 and 2200 cm(-1), due to linearly adsorbed CO on Mo and N sites, respectively. The surface N sites are highly reactive and can react with adsorbed CO to form NCO species. Unlike adsorbed CO on reduced passivated one, the adsorbed CO on fresh Mo2N/gamma-Al2O3 behaves similarly to that of group VIII metals, suggesting that fresh nitride resembles noble metals. It is found that the surface of Mo nitrides slowly transformed into sulfide under hydrotreating conditions, which could be the main reason for the activity drop of molybdenum nitride catalysts in the presence of sulfur-containing species. Some surface reactions, such as selective hydrogenation of 1,3-butadiene, isomerization of 1-butene, and hydrodesulfurization of thiophene, were studied on both fresh and reduced passivated Mo2N/gammaAl(2)O(3) catalysts using IR spectroscopy. The mechanisms of these reactions are proposed. The adsorption and reaction behaviors of these molecules on fresh molybdenum nitride also resemble those on noble metals, manifesting the unique properties of fresh molybdenum nitride catalysts. Mo and N sites are found to play different roles in the adsorption and catalytic reactions on the fresh Mo2N/gammaAl(2)O(3) catalyst. Generally, Mo sites are the main active sites for the adsorption and reactions of adsorbates; N sites are not directly involved in catalytic reactions but they modify the electronic properties of Mo sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica-supported molybdenum surface complexes were prepared by the reaction between (N=) Mo(OtBu)(3) and silica via displacement of the tert-butoxy ligands for siloxyls from the silica surface. The structure of the surface molybdenum complexes was well defined by in-situ FT-IR, elemental analysis, H-1 NMR and C-13 CP/MAS NMR techniques. The surface complexes could undergo alcoholysis reaction with CD3OD and CH3OH in the same way as free (N =) Mo(OtBu)(3) and they show high catalytic activity and selectivity in olefin epoxidation. Initial rates up to 24.9 mmol epoxide (mmol Mo)(-1) min(-1) were achieved in the epoxidation of cyclohexene using TBHP as oxidant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate three-dimensional time-dependent quantum wave packet calculations for the N+OH reaction on the (3)A' potential energy surface [Guadagnini, Schatz, and Walch, J. Chem. Phys. 102, 774 (1995)] have been carried out. The calculations show for the first time that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The calculated reaction cross sections indicate that they are a decreasing function of the translational energy, which is in agreement qualitatively with the quasiclassical trajectory calculations. The rate constants obtained from the quantum mechanical calculations are consistent with the quasiclassical trajectory results and the experimental measurements. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoporous VSB-5 nickel phosphate molecular sieves with relatively well controllable sizes and morphology of microspheres assembled from nanorods were synthesized at 140 degrees C over a short time in the presence of hexamethylenetetramine (HMT) by a facile hydrothermal method. The pH value, reaction time, and ratio of HMT to NaHPO2-H2O crucially influence the morphology and quality of the final products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study. Nafion (R) 117 membrane is surface-modified with mesoporous silica layers through in situ surfactant-templated sol-gel reaction. The reaction makes use of tetraethyl orthosilicate (TEOS) under acidic condition via dip-coating technique on both sides. Scanning electron microscopy (SEM), Fourier transformation infrared (FTIR), and thermogravimetric analysis (TGA) are employed to characterize the resultant membranes. Proton conductivity and methanol permeability of the membranes are also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile and efficient one-pot synthesis of halogenated pyridin-2(1H)-ones from a series of readily available enaminones under Vilsmeier conditions is described, and a mechanism involving sequential halogenation, formylation, and intramolecular nucleophilic cyclization is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An interesting shape evolution of. PbS crystals, that is, from cubes to (truncated) octahedra and finally to stable star-shaped multipods with six arms along the < 100 > directions is first realized via a facile polyol-mediated reaction between lead acetate and sulfur powder in the absence of surfactants. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) techniques were employed to characterize the samples. We elucidate the important parameters (including reaction temperature and sulfur sources) responsible for the shape-controlled synthesis of PbS crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-crystal Au nanosheets and fcc gold nanocrystals of uniform size were synthesized by a novel and simple route. The results of field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated the formation of the single-crystal structure of gold nanosheets and fcc nanocrystals. Energy-dispersive analysis of X-ray (EDAX) showed absorbance of cetyltrimethylammonium bromide (CTAB) molecules onto the surface of gold nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of formic acid electrooxidation on iron tetrasulfophthalocyanine (FeTSPc) modified Pt electrode was investigated with electrochemical methods. It was found that a "third-body" effect of FeTSPc on Pt electrode predominates during the electrooxidation process based on unusual electrochemical results. The modification leads formic acid electrooxidation to take place through a desired direct pathway, in which the mechanism is proposed to be the gradual dehydrogenation of formic acid and the reaction of formate with hydroxyl species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of organically modified montmorillonites (OMMTs) with different type and amount of modifiers on flame retardancy of polystyrene (PS) have been studied. The results from morphology analysis, gas chromatography-mass spectrometry and cone calorimeter have showed different mechanisms for the flame retardancy of PS/OMMTs composites, depending on surface property of OMNTrs. One is the catalysis of acid sites formed on the surface of octadecylammonium modified MMT (c-MMT) via Hoffman decomposition on the carbonization of degradation products, which promotes the formation of clay-enriched char barrier.