919 resultados para Spray deposit
Resumo:
Miniaturized analytical devices, such as heated nebulizer (HN) microchips studied in this work, are of increasing interest owing to benefits like faster operation, better performance, and lower cost relative to conventional systems. HN microchips are microfabricated devices that vaporize liquid and mix it with gas. They are used with low liquid flow rates, typically a few µL/min, and have previously been utilized as ion sources for mass spectrometry (MS). Conventional ion sources are seldom feasible at such low flow rates. In this work HN chips were developed further and new applications were introduced. First, a new method for thermal and fluidic characterization of the HN microchips was developed and used to study the chips. Thermal behavior of the chips was also studied by temperature measurements and infrared imaging. An HN chip was applied to the analysis of crude oil – an extremely complex sample – by microchip atmospheric pressure photoionization (APPI) high resolution mass spectrometry. With the chip, the sample flow rate could be reduced significantly without loss of performance and with greatly reduced contamination of the MS instrument. Thanks to its suitability to high temperature, microchip APPI provided efficient vaporization of nonvolatile compounds in crude oil. The first microchip version of sonic spray ionization (SSI) was presented. Ionization was achieved by applying only high (sonic) speed nebulizer gas to an HN microchip. SSI significantly broadens the range of analytes ionizable with the HN chips, from small stable molecules to labile biomolecules. The analytical performance of the microchip SSI source was confirmed to be acceptable. The HN microchips were also used to connect gas chromatography (GC) and capillary liquid chromatography (LC) to MS, using APPI for ionization. Microchip APPI allows efficient ionization of both polar and nonpolar compounds whereas with the most popular electrospray ionization (ESI) only polar and ionic molecules are ionized efficiently. The combination of GC with MS showed that, with HN microchips, GCs can easily be used with MS instruments designed for LC-MS. The presented analytical methods showed good performance. The first integrated LC–HN microchip was developed and presented. In a single microdevice, there were structures for a packed LC column and a heated nebulizer. Nonpolar and polar analytes were efficiently ionized by APPI. Ionization of nonpolar and polar analytes is not possible with previously presented chips for LC–MS since they rely on ESI. Preliminary quantitative performance of the new chip was evaluated and the chip was also demonstrated with optical detection. A new ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), was presented. The DAPPI technique is based on an HN microchip providing desorption of analytes from a surface. Photons from a photoionization lamp ionize the analytes via gas-phase chemical reactions, and the ions are directed into an MS. Rapid analysis of pharmaceuticals from tablets was successfully demonstrated as an application of DAPPI.
Resumo:
This research examined the influence of tectonic activity on submarine sedimentation processes, through a deposit-based analysis of turbidites in outcrop. A comprehensive field study of the Miocene Whakataki Formation yielded significant data that was analysed using methods of process-sedimentology, stratigraphy, and ichnology. Signatures of the tectonically active depositional environment were identifiable at very high resolution, from grain composition and texture to trace-fossil assemblages, as well as on a broader-scale in stratigraphic stacking patterns and structural deformation. From these results and environmental interpretations, an original facies characterisation and conceptual depositional model have been established.
Resumo:
A large weevil was found infesting macadamia nuts on the Atherton Tableland during the 1994/95 season. It was unrepresented in various Australian insect collections but thought to belong to the genus Sigastus. This paper reports some preliminary studies on its biology, pest status and control. From 4-6 weeks after first nut-set adult females commence laying single eggs through the husk, after first scarifying an oviposition site. The nut stalk is then cleaved leading to rapid abscission. Nuts were generally attacked up until hard shell formation. Weevil larvae consumed whole kernels, with % survival higher and larval duration shorter in larger nuts. Infestation rates increased with increasing nut diameter, reaching 72.8% of fallen nuts by mid-October. A crop loss of 30% could be attributed to weevils in an unsprayed orchard. However, adult weevils are very susceptible to both carbaryl and methidathion sprays. In addition, exposure of infested nuts to full sunlight over several weeks kills 100% of larvae. Crops should be surveyed for weevil damage from the 5-10 mm diameter stage until mid-December. Methidathion used as an initial spray for fruitspotting bugs should provide control. Organic growers are advised to sweep infested nuts into mown interrows where solarisation will kill larvae.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha-') provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20~40 L ha-'). The PB-20 provided better spray coverage on the upper surface of middle leaves and both Surfaces of outer leaves when compared with the Selecta I2V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha - ' for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers
Resumo:
Instances of morbidity amongst rock lobsters (Panulirus cygnus) arriving at factories in Western Australia (WA) have been attributed to stress during post-harvest handling. This study used discriminant analysis to determine whether physiological correlates of stress following a period of simulated post-harvest handling had any validity as predictors of future rejection or morbidity of western rock lobsters. Groups of 230 western rock lobsters were stored for 6 h in five environments (submerged/flowing sea water, submerged/re-circulating sea water, humid air, flowing sea water spray, and re-circulated sea water spray). The experiment was conducted in late spring (ambient sea water 22°C), and repeated again in early autumn (ambient sea water 26°C). After 6 h treatment, each lobster was graded for acceptability for live export, numbered, and its hemolymph was sampled. The samples were analysed for a number of physiological and health status parameters. The lobsters were then stored for a week in tanks in the live lobster factory to record mortality. The mortality of lobsters in the factory was associated with earlier deviations in hemolymph parameters as they emerged from the storage treatments. Discriminant analysis (DA) of the hemolymph assays enabled the fate of 80-90% of the lobsters to be correctly categorised within each experiment. However, functions derived from one experiment were less accurate at predicting mortality when applied to the other experiments. One of the reasons for this was the higher mortality and the more severe patho-physiological changes observed in lobsters stored in humid air or sprays at the higher temperature. The analysis identified lactate accumulation during emersion and associated physiological and hemocyte-related effects as a major correlate of mortality. Reducing these deviations, for example by submerged transport, is expected to ensure high levels of survival. None of the indicators tested predicted mortality with total accuracy. The simplest and most accurate means of comparing emersed treatments was to count the mortality afterwards.
Resumo:
The monoterpene cyclic ether, cineole (l,8-cineole, I) also known as eucalyptol, is a component of many essential oils and is widely distributed in nature. It is extensively used in pharmaceutical preparations for external application and also as a nasal spray. It was reported earlier that cineole when administered to sheep may be largely oxidized in the system (Scheline 1978). However the mode of metabolism of cineole is not known. Hence the present study was undertaken to investigate the metabolic fate of this ubiquitous terpenoid following its administration to rats by gastric intubation.
Resumo:
Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.
Resumo:
Several chemicals including strobilurins (pyraclostrobin and azoxystrobin), triazoles (difenoconazole and tebuconazole), dithiocarbamates (propineb, metiram, ziram and mancozeb) and the phthalimide chlorothalonil were evaluated in three field experiments in north Queensland, Australia, for the control of brown spot (caused by Corynespora cassiicola) and black spot (caused by Asperisporium caricae) of papaya. Chlorothalonil and pyraclostrobin were shown to be more effective than the industry standard, mancozeb, for the control of brown spot. In the black spot experiments, difenoconazole, pyraclostrobin and chlorothalonil used alone or in spray programs were as effective as, or better than, the industry standards, mancozeb and tebuconazole. Plants treated with pyraclostrobin and difenoconazole had more fruit unaffected by black spot (97% and 99% respectively) than plants treated with tebuconazole (51%), mancozeb (20%) and the untreated controls (1%). Laboratory tests also showed that A. caricae was more sensitive to difenoconazole (EC50 of 2ppm) than tebuconazole (EC50 of 14ppm). In 2007, off-label permits were obtained for chlorothalonil for control of brown spot and difenoconazole and chlorothalonil for the control of black spot of papaya.
Resumo:
Three field trials were conducted over 12 months to assess the pathogenicity of Metarhizium anisopliae to parasitic stages of Rhipicephalus (Boophilus) microplus on dairy heifers under different environmental conditions. Two isolates were selected based on their high optimal growth temperature (30 °C), good spore production characteristics and ability to quickly kill adult engorged ticks in the laboratory. Spores were formulated in an oil emulsion and applied using a motor driven spray unit. Surface temperatures of selected animals were monitored, as were the ambient temperature and relative humidity. Unengorged ticks sampled from each animal immediately after treatment were incubated in the laboratory to assess the efficacy of the formulation and application. Egg production by engorged ticks collected in the first 3 days after treatment was monitored. Side counts of standard adult female ticks were conducted daily, before and after treatment to assess the performance of the fungus against all tick stages on the animals. In each trial the formulation rapidly caused 100% mortality in unengorged ticks that were removed from cattle and cultured in the laboratory. A significant reduction in egg production was recorded for engorged ticks collected in the 3 days post-treatment. However, there was little effect of the formulation on the survival of ticks on cattle, indicating that there is an interaction between the environment of the ticks on the cattle and the biopesticide, which reduces its efficacy against ticks.
Resumo:
As a first step to better targeting the activities of a project for improving management of western flower thrips, Frankliniella occidentialis, (WFT) in field grown vegetable crops, we surveyed growers, consultants and other agribusiness personnel in two regions of Queensland. Using face-to-face interviews, we collected data on key pests and measures used to manage them, the importance of WFT and associated viral diseases, sources of pest management information and additional skills and knowledge needed by growers and industry. Responses were similar in the two regions. While capsicum growers in one northern Queensland district had suffered serious losses from WFT damage in 2002, in general the pest was not seen as a major problem. In cucurbit crops, the silverleaf whitefly (Bemisia tabaci biotype B) was considered the most difficult insect pest to manage. Pest control tactics were largely based on pesticides although many respondents mentioned non-chemical methods such as good farm hygiene practices, control of weed hosts and regular crop monitoring, particularly when prompted. Respondents wanted to know more about pest identification, biology and damage, spray application and the best use of insecticides. Natural enemies were mentioned infrequently. Keeping up to date with available pesticide options, availability of new chemicals and options for a district-wide approach to managing pests emerged as key issues. Growers identified agricultural distributors, consultants, Queensland Department of Primary Industries staff, other growers and their own experience as important sources of information. Field days, workshops and seminars did not rank highly. Busy vegetable growers wanted these activities to be short and relevant, and preferred to be contacted by post and facsimile rather than email. In response to these results, we are focusing on three core, interrelated project extension strategies: (i) short workshops, seminars and farm walks to provide opportunities for discussion, training and information sharing with growers and their agribusiness advisors; (ii) communication via newsletters and information leaflets; (iii) support for commercialisation of services.
Resumo:
This study reports on the effect of oversowing perennial ryegrass (Lolium perenne L.) into a degraded perennial ryegrass and white clover (Trifolium repens L.) pasture to extend its productive life using various intensities of seedbed preparation. Sites in New South Wales (NSW), Western Australia (WA), South Australia (SA) and Tasmania (Tas.) were chosen by a local group of farmers as being degraded and in need of renovation. Control (nil renovation) and medium (mulch and graze, spray with glyphosphate and sow) renovation treatments were common to all sites whereas minimum (mulch and graze, and sow) and full seedbed (graze and spray with glyphosphate and then full seedbed preparation) renovation were imposed only at some sites. Plots varied in area from 0.14 to 0.50 ha, and were renovated then sown in March or April 2000 and subsequently grazed by dairy cows. Pasture utilisation was estimated from pre- and post-grazing pasture mass assessed by a rising plate pasture meter. Utilised herbage mass of the renovated treatments was significantly higher than control plots in period 1 (planting to August) and 2 (first spring) at the NSW site only. There was no difference among treatments in period 3 (first summer) at any site, and only at the WA and NSW sites in period 4 (March to July 2001) was there a response to renovation. As a result, renovation at the NSW site only significantly increased ryegrass utilisation over the whole experimental period. Ryegrass plant density was higher at the NSW, WA (excluding minimum renovation) and Tas. (excluding full renovation) sites 6 months after renovation but this was only sustained for 12 months for the minimum and medium treatments at the NSW and Tas. sites, respectively, presumably due to reduced competition from naturalised C4 summer grasses [kikuyu (Pennisetum clandestinum) and paspalum (Paspalum dilatatum)] in NSW At the NSW, WA and SA sites, the original ryegrass plant density was low (<35 plants/m2) compared with the Tas. site where density was around 185/m2. The response to renovating a degraded perennial ryegrass pasture varied between sites in Australia. Positive responses were generally small and were most consistent where renovation removed competing C4 summer grasses.
Resumo:
Quilpie mesquite (Prosopis velutina) is an invasive woody weed that is believed to have been introduced into south-west Queensland in the 1930s. Following the withdrawal of 2,4,5-T, research on P. pallida resulted in revised recommendations for control of all Prosopis spp. in Queensland. Adoption of many of these recommendations for Quilpie mesquite control produced substandard results. Following a pilot trial, a shade-house experiment was conducted to determine the differences in susceptibility of two species of mesquite, P. velutina and P. pallida, to commonly available herbicides. It was hypothesized that P. velutina was less susceptible than P. pallida, based upon claims that the registered chemical recommendations for Prosopis spp. were not sufficiently effective on P. velutina. Nine foliar herbicide treatments were applied to potted shade-house plants. Treatment effects indicated differing susceptibility between the two species. P. velutina consistently showed less response to metsulfuron, fluroxypyr, 2,4-D/picloram and triclopyr/picloram, compared to the glyphosate formulations, where negligible differences occurred between the two species. The response to glyphosate was poor at all rates in this experiment. Re-application of herbicides to surviving plants indicated that susceptibility can decrease when follow-up application is in autumn and the time since initial application is short. The relationship between leaf structure and the volume of spray adhering to a plant was assessed across species. The herbicide captured by similar-sized plants of each species differed, with P. pallida retaining a greater volume of herbicide.
Resumo:
A replicated trial was conducted at Tallegalla in south-east Queensland to assess the effectiveness of a range of control methods for climbing asparagus Asparagus africanus Lam. A total of 18 treatments using mechanical, cut stump, basal bark, foliar spray and splatter gun techniques were trialled with a range of herbicides and application rates. Removing the plant and placing it above the ground surface was most effective in killing climbing asparagus. Basal bark spraying of 24 g triclopyr ester (40 mL Garlon® 600) or 10 g fluroxypyr ester (50 mL Starane® 200) L-1 diesel and the cut stump application of neat diesel or 225 g glyphosate (500 mL Glyphosate CT®) L-1 water offered the best chemical control of climbing asparagus.
Resumo:
A replicated trial to determine effective chemical control methods for the invasive species, basket asparagus (Asparagus aethiopicus L. cv. Sprengeri) was conducted at Currumbin Hill, Queensland, from June 1999 to August 2000. Four herbicides (metsulfuron-methyl, dicamba, glyphosate and diesel) were applied at different times of the year (winter, spring, summer and autumn). Neat diesel applied to adult crowns effectively killed basket asparagus. However, germination of basket asparagus and other weeds was not prevented. An overall spray of 0.06 g metsulfuron-methyl (0.1 g Brush-Off®) + 1 mL BS 1000® L-1 water gave slower but more selective long-term control of basket asparagus when compared to diesel, especially when applied in winter and spring. High rates of foliar applied dicamba were most effective in spring and glyphosate splatter gunned on base of stems in autumn. The combination of increased selectivity, ease of application and likelihood of reduced environmental impacts on native plants, other than coast she-oak (Casuarina equisetifolia L. var. incana Benth.), of metsulfuron-methyl makes it more suitable for controlling large infestations of basket asparagus.
Resumo:
In February 2004, Redland Shire Council with help from a Horticulture Australia research project was able to establish a stable grass cover of seashore paspalum (Paspalum vaginatum) on a Birkdale park where the soil had previously proved too salty to grow anything else. Following on from their success with this small 0.2 ha demonstration area, Redland Shire has since invested hundreds of thousands of dollars in successfully turfing other similarly “impossible” park areas with seashore paspalum. Urban salinity can arise for different reasons in different places. In inland areas such as southern NSW and the WA wheatbelt, the usual cause is rising groundwater bringing salt to the surface. In coastal sites, salt spray or periodic tidal inundation can result in problems. In Redland Shire’s case, the issue was compacted marine sediments (mainly mud) dug up and dumped to create foreshore parkland in the course of artificial canal developments. At Birkdale, this had created a site that was both strongly acid and too salty for most plants. Bare saline scalds were interspersed by areas of unthrifty grass. Finding a salt tolerant grass is no “silver bullet” or easy solution to salinity problems. Rather, it buys time to implement sustainable long-term establishment and maintenance practices, which are even more critical than with conventional turfgrasses. These practices include annual slicing or coring in conjunction with gypsum/dolomite amendment and light topdressing with sandy loam soil (to about 1 cm depth), adequate maintenance fertiliser, weed control measures, regular leaching irrigation was applied to flush salts below the root zone, and irrigation scheduling to maximise infiltration and minimise run off. Three other halophytic turfgrass species were also identified, each of them adapted to different environments, management regimes and uses. These have been shortlisted for larger-scale plantings in future work.