891 resultados para Si-based polymer film


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A post-complementary metal oxide semiconductor (CMOS) compatible microfabrication process of piezoelectric cantilevers has been developed. The fabrication process is suitable for standard silicon technology and provides low-cost and high-throughput manufacturing. This work reports design, fabrication and characterization of piezoelectric cantilevers based on aluminum nitride (AlN) thin films synthesized at room temperature. The proposed microcantilever system is a sandwich structure composed of chromium (Cr) electrodes and a sputtered AlN film. The key issue for cantilever fabrication is the growth at room temperature of the AlN layer by reactive sputtering, making possible the innovative compatibility of piezoelectric MEMS devices with CMOS circuits already processed. AlN and Cr have been etched by inductively coupled plasma (ICP) dry etching using a BCl3–Cl2–Ar plasma chemistry. As part of the novelty of the post-CMOS micromachining process presented here, a silicon Si (1 0 0) wafer has been used as substrate as well as the sacrificial layer used to release the microcantilevers. In order to achieve this, the Si surface underneath the structure has been wet etched using an HNA (hydrofluoric acid + nitric acid + acetic acid) based solution. X-ray diffraction (XRD) characterization indicated the high crystalline quality of the AlN film. An atomic force microscope (AFM) has been used to determine the Cr electrode surface roughness. The morphology of the fabricated devices has been studied by scanning electron microscope (SEM). The cantilevers have been piezoelectrically actuated and their out-of-plane vibration modes were detected by vibrometry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Safety in civil aviation is increasingly important due to the increase in flight routes and their more challenging nature. Like other important systems in aircraft, fuel level monitoring is always a technical challenge. The most frequently used level sensors in aircraft fuel systems are based on capacitive, ultrasonic and electric techniques, however they suffer from intrinsic safety concerns in explosive environments combined with issues relating to reliability and maintainability. In the last few years, optical fiber liquid level sensors (OFLLSs) have been reported to be safe and reliable and present many advantages for aircraft fuel measurement. Different OFLLSs have been developed, such as the pressure type, float type, optical radar type, TIR type and side-leaking type. Amongst these, many types of OFLLSs based on fiber gratings have been demonstrated. However, these sensors have not been commercialized because they exhibit some drawbacks: low sensitivity, limited range, long-term instability, or limited resolution. In addition, any sensors that involve direct interaction of the optical field with the fuel (either by launching light into the fuel tank or via the evanescent field of a fiber-guided mode) must be able to cope with the potential build up of contamination-often bacterial-on the optical surface. In this paper, a fuel level sensor based on microstructured polymer optical fiber Bragg gratings (mPOFBGs), including poly (methyl methacrylate) (PMMA) and TOPAS fibers, embedded in diaphragms is investigated in detail. The mPOFBGs are embedded in two different types of diaphragms and their performance is investigated with aviation fuel for the first time, in contrast to our previous works, where water was used. Our new system exhibits a high performance when compared with other previously published in the literature, making it a potentially useful tool for aircraft fuel monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low temperature synthesis method based on the decomposition of urea at 90°C in water has been developed to synthesise fraipontite. This material is characterised by a basal reflection 001 at 7.44 Å. The trioctahedral nature of the fraipontite is shown by the presence of a 06l band around 1.54 Å, while a minor band around 1.51 Å indicates some cation ordering between Zn and Al resulting in Al-rich areas with a more dioctahedral nature. TEM and IR indicate that no separate kaolinite phase is present. An increase in the Al content however, did result in the formation of some SiO2 in the form of quartz. Minor impurities of carbonate salts were observed during the synthesis caused by to the formation of CO32- during the decomposition of urea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores how we may transform peoples’ perceived access to cultural participation by exploiting the possible relationships between place, play and mobile devices. It presents SCOOT; a location-based game in order to investigate how aspects of game-play can be employed to evoke at once playful and culturally meaningful experiences of place. In particular this paper is concerned with how the portable, communicative and social affordances of mobile phones are integral to making a “now everything looks like a game” experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we explore what is required of a User Interface (UI) design in order to encourage participation around playing and creating Location-Based Games (LBGs). To base our research in practice, we present Cipher Cities, a web based system. Through the design of this system, we investigate how UI design can provide tools for complex content creation to compliment and encourage the use of mobile phones for designing, distributing, and playing LBGs. Furthermore we discuss how UI design can promote and support socialisation around LBGs through the design of functional interface components and services such as groups, user profiles, and player status listings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD project has expanded the knowledge in the area of profluorescent nitroxides with regard to the synthesis and characterisations of novel profluorescent nitroxide probes as well as physical characterisation of the probe molecules in various polymer/physical environments. The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, was described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation. In addition to the parent TMAO, 5 other azaphenalene derivatives were successfully synthesised. This new class of nitroxide was expected to have interesting redox properties when the structure was investigated by high-level ab initio molecular orbitals theory. This was expected to have implications with biological relevance as the calculated redox potentials for the azaphenalene ring class would make them potent antioxidant compounds. The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrroline, piperidine, isoindoline and azaphenalene) were determined by cyclic voltammetry in acetonitrile. It was shown that potentials related to the one electron processes of the nitroxide were influenced by the type of ring system, ring substituents or groups surrounding the moiety. Favourable comparisons were found between theoretical and experimental potentials for pyrroline, piperidine and isoindoline ring classes. Substitution of these ring classes, were correctly calculated to have a small yet predictable effect on the potentials. The redox potentials of the azaphenalene ring class were underestimated by the calculations in all cases by at least a factor of two. This is believed to be due to another process influencing the redox potentials of the azaphenalene ring class which is not taken into account by the theoretical model. It was also possible to demonstrate the use of both azaphenalene and isoindoline nitroxides as additives for monitoring radical mediated damage that occurs in polypropylene as well as in more commercially relevant polyester resins. Polymer sample doped with nitroxide were exposed to both thermo-and photo-oxidative conditions with all nitroxides showing a protective effect. It was found that isoindoline nitroxides were able to indicate radical formation in polypropylene aged at elevated temperatures via fluorescence build-up. The azaphenalene nitroxide TMAO showed no such build-up of fluorescence. This was believed to be due to the more labile bond between the nitroxide and macromolecule and the protection may occur through a classical Denisov cycle, as is expected for commercially available HAS units. Finally, A new profluorescent dinitroxide, BTMIOA (9,10-bis(1,1,3,3- tetramethylisoindolin-2-yloxyl-5-yl)anthracene), was synthesised and shown to be a powerful probe for detecting changes during the initial stages of thermo-oxidative degradation of polypropylene. This probe, which contains a 9,10-diphenylanthracene core linked to two nitroxides, possesses strongly suppressed fluorescence due to quenching by the two nitroxide groups. This molecule also showed the greatest protective effect on thermo-oxidativly aged polypropylene. Most importantly, BTMIOA was found to be a valuable tool for imaging and mapping free-radical generation in polypropylene using fluorescence microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The title compound catena-poly[aqua-mu3-2-nitrocinnamato], [Na(C9H6NO4)(H2O)2]n, the sodium salt of trans-2-nitrocinnamic acid, is a one-dimensional coordination polymer based on six-coordinate octahedral NaO6 centres comprising three facially-related monodentate carboxylate O-atom donors from separate ligands (all bridging)[Na-O, 2.4370(13)-2.5046(13)A] and three water molecules (two bridging, one monodentate) [Na-O, 2.3782(13)-2.4404(17)A]. The structure is also stabilized by intra-chain water-O-H...O(carboxylate) and O-H...O(nitro) hydrogen bonds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using an in situ-generated calcium-based initiating species derived from pentaerythritol, the bulk synthesis of well-defined 4-arm star poly(L-lactide) oligomers has been studied in detail. The substitution of the traditional initiator, stannous octoate with calcium hydride allowed the synthesis of oligomers that had both low PDIs and a comparable number of polymeric arms (3.7 – 3.9) to oligomers of similar molecular weight. Investigations into the degree of control observed during the course of the polymerization found that the insolubility of pentaerythritol in molten L-lactide resulted in an uncontrolled polymerization only when the feed mole ratio of L-lactide to pentaerythritol was 13. At feed ratios of 40 and greater, a pseudo-living polymerization was observed. As part of this study, in situ FT-Raman spectroscopy was demonstrated to be a suitable method to monitor the kinetics of the ring-opening polymerization (ROP) of lactide. The advantages of using this technique rather than FT-IR-ATR and 1H NMR for monitoring L-lactide consumption during polymerization are discussed.