998 resultados para Semiconductor doping
Resumo:
Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.
Resumo:
The x-ray and gamma-ray induced damage in BaLiF3 crystallites and its suppression by rare earth ion doping have been studied by electron spin resonance and thermally stimulated luminescence methods. It has been found that the x-ray irradiation damage is light and can be erased easily. This shows that the BaLiF3 crystallite is an ideal host for x-ray storage material. But the damage induced by gamma-ray has been found to be relatively hard to recover; however the gamma-ray irradiation hardness can be improved by rare earth (e.g., La3+, Yb3+) ion doping. So the BaLiF3 is also promising material for being used in detection of high-energy particles (e.g., gamma-ray).
Resumo:
The complex fluorides LiYF4, KYF4, BaBeF4 and AYF(4)Eu(x) (A = Li, K) are hydrothermally synthesized at 140-240 degrees C and characterized by powder X-ray diffraction, thermogravimetric analysis, IR spectroscopy, scanning electron microscopy and luminescence measurements.
Resumo:
With XRD, R-T, and ac chi measurements a comparative study on the doping effects of 3d elements in Bi(1.5)Pb(0.2)Sr(2)Ca(2)Cu(2.8)M(0.2)O(y) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, or Zn) has been carried out. The effects of the former five members are significantly different, both on phase formed and on T-c, from the latter four. It seems that the effect on phase stabilization correlates with the valency of the doped cation. In connection with the instability of the 2223 phase, the correlation has been discussed.
Resumo:
Ln(2)Mo(3)O(12) and Ce2Mo3O12.25 are reduced by hydrogen yielding Mo4+ oxides of the formula Ln(2)Mo(3)O(9) (Ln = La, Ce, Pr, Nd, Sm, Gd and Dy). The new compound Ce2Mo3O9 has the same structure as other Ln(2)Mo(3)O(9) compounds. All of the products are single phase materials and crystallize in a tetragonal scheelite type structure with Mo2O6 clusters. The IR spectra of the Ln(2)Mo(3)O(9) oxides show two absorption bands. These compounds are black n-type semiconductors, and exhibit Curie-Weiss Law behavior from 100K to 250K. Temperature dependence of the electrical properties of these compounds were measured for the first time, and a semiconductor-metal transition was found at about 250 degrees C.
Resumo:
The aniline encapsulated in the channels of zeolite molecular sieves was polymerized electrochemically. The doping reaction of polyaniline was studied in 12-Molybdophosphoric acid and sulfuric acid solution. The results indicate the zeolite modified ele
Resumo:
X-ray diffraction and electrical and diamagnetic analyses revealed that the 2223 phase was significantly enhanced by high-valence cation (V5+, Nb5+, Ta5+, etc.) doping in BiSrCaCuO samples. The optimum nominal composition was Bi1.6M0.4Sr2Ca2Cu3 O(y)(M =
Resumo:
Poly-o-methylaniline (poly-o-toluidine) was doped by some protonic acids. It was found that the acidity, molecular size and oxidizing ability of protonic acids affected the doping level and conductivity of polymer obtained to some extent. The organic acid
Resumo:
YBa2Cu3-xTaxO7-y (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) superconductors have been prepared, X-ray diffraction shows that the system remains orthorhombic for all compositions studied but. for x > 0.2, Ta2O5 was detected as an impurity phase. Substitution of Ta5+ for Cu2+ occurs in the Cu(2) sites on the Cu(2)O planes. The introduction of the high-valence element tantalum produces extra free electrons. These electrons recombine with the positive carrier of the system, which causes the mobility and the Hall number of YBa2Cu3-xTaxO7-y to decrease and also results in a depression in T(c).
Resumo:
The C=C stretching Raman shifts and photoluminescence (PL) for poly(3-methylthiophene) (P3MT) are measured at various doping levels by in situ electrochemical Raman and PL spectroscopic techniques. It is found that the doping for P3MT induces the nonlinear excitations (soliton, Polaron, bipolaron), but also affects the polymer-chain structure, including the conjugated length and the interchain distance.
Resumo:
The reactions of polyaniline and poly-omicron-methylaniline of different oxidation degrees with I2 were followed by FTIR and electrical conductivity measurements. The results showed that the reaction of common polyanilines with I2 was oxidation in nature whereas that of the fully reduced ones was doping. The latter took place in two steps: oxidation of benzene-diamine units into quinone-diimine units (redox between I2 and the polymer chain) and formation of a conjugated system consisting of four aromatic rings (intramolecular chain redox).