902 resultados para Sandy beach aquifers
Resumo:
As costas arenosas estão actualmente sujeitas a intensos processos erosivos, resultado tanto de actividades humanas como de processos naturais. Na costa portuguesa, este aspecto é bem evidente pelo recuo da linha de costa, pela diminuição da largura das praias, pela degradação dos sistemas dunares e principalmente, pela proliferação de obras fixas de protecção costeira ao longo da linha de costa. Desde a última metade do século passado que a Vagueira tem sido submetida a um intenso processo erosivo, resultando num acentuado recuo da linha de costa. A principal causa apontada para este facto, é a retenção de sedimentos por parte do molhe Norte do porto de Aveiro, impedindo-os de serem transportados pela deriva litoral. Existem também outras causas que contribuem para o acelerar deste processo, tais como a diminuição da quantidade de sedimentos fornecida pela deriva litoral e a retenção de sedimentos por parte das obras transversais de defesa costeira. Nos dias de hoje, a erosão costeira é um verdadeiro risco, e mesmo com a existência de obras fixas de protecção costeira, o avanço do mar é uma constante. Na Vagueira, a pressão urbana sobre o ecossistema costeiro, alterando as suas morfologias e interferindo no seu dinamismo, tem sido um factor interveniente no processo da erosão neste sector costeiro. Desde 1958, tem-se observado um recuo efectivo da linha de costa na Praia da Vagueira, e hoje em dia já se verifica a quase completa destruição do cordão dunar frontal e a construção de diques arenosos na tentativa de impedir a abertura de um novo canal de ligação entre o canal de Mira e o oceano e de proteger valores naturais irrecuperáveis. A construção da cartografia para cada ano em estudo permitiu a quantificação dos valores médios e absolutos do recuo da linha de costa na Vagueira desde 1958 a 2002. A monitorização da praia da Vagueira entre Outubro de 2002 e Outubro de 2003 permitiu a caracterização da praia emersa e apontar o comportamento geral da área em estudo.
Resumo:
Panel title.
Resumo:
The first part of this study examines the relative roles of frontogenesis and tropopause undulation in determining the intensity and structural changes of Hurricane Sandy (2012) using a high-resolution cloud-resolving model. A 138-h simulation reproduces Sandy’s four distinct development stages: (i) rapid intensification, (ii) weakening, (iii) steady maximum surface wind but with large continued sea-level pressure (SLP) falls, and (iv) re-intensification. Results show typical correlations between intensity changes, sea-surface temperature and vertical wind shear during the first two stages. The large SLP falls during the last two stages are mostly caused by Sandy’s moving northward into lower-tropopause regions associated with an eastward-propagating midlatitude trough, where the associated lower-stratospheric warm air wraps into the storm and its surrounding areas. The steady maximum surface wind occurs because of the widespread SLP falls with weak pressure gradients lacking significant inward advection of absolute angular momentum (AAM). Meanwhile, there is a continuous frontogenesis in the outer region during the last three stages. Cyclonic inward advection of AAM along each frontal rainband accounts for the continued expansion of the tropical-storm-force wind and structural changes, while deep convection in the eyewall and merging of the final two survived frontal rainbands generate a spiraling jet in Sandy’s northwestern quadrant, leading to its re-intensification prior to landfall. The physical, kinematic and dynamic aspects of an upper-level outflow layer and its possible impact on the re-intensification of Sandy are examined in the second part of this study. Above the outflow layer isentropes are tilted downward with radius as a result of the development of deep convection and an approaching upper-level trough, causing weak subsidence. Its maximum outward radial velocity is located above the cloud top, so the outflow channel experiences cloud-induced long-wave cooling. Because Sandy has two distinct convective regions (an eyewall and a frontal rainband), it has multiple outflow layers, with the eyewall’s outflow layer located above that of the frontal rainband. During the re-intensification stage, the eyewall’s outflow layer interacts with a jet stream ahead of the upper-level trough axis. Because of the presence of inertial instability on the anticyclonic side of the jet stream and symmetric instability in the inner region of the outflow layer, Sandy’s secondary circulation intensifies. Its re-intensification ceases when these instabilities disappear. The relationship between the intensity of the secondary circulation and dynamic instabilities of the outflow layer suggests that the re-intensification occurs in response to these instabilities. Additionally, it is verified that the long-wave cooling in the outflow layer helps induce symmetric instability by reducing static stability.
Resumo:
Background: Assessing the chemical or bacterial contamination in marine waters and sediments is a very common approach to evaluate marine pollution and associated risks. However, toxicity and organic pollution of beach sands have not yet been considered, except in adjacent waters. In the present study, the toxicity and the chemical contamination of natural beach sands collected 20 m from the shoreline at two sites located on the Mediterranean Sea (Marseille and La Marana, Corsica) were studied. Results: Up to 16.93% (net percentage) abnormal or dead larvae was observed in elutriates prepared from the urban beach sand sample (Marseille); no significant toxicity was observed in the sample collected from the reference beach in La Marana. Results of Fourier transform infrared spectroscopy analyses revealed that no microplastics were present in either of the samples. Several polycyclic aromatic hydrocarbons [PAHs] in both samples and a larger number of individual PAHs in the urban sample than in the sample collected from the reference beach were detected. In addition, the antioxidant dioctyldiphenylamine was detected in both beach sand samples, whereby a higher concentration was found in La Marana than in Marseille. Calculated PAH concentrations in elutriates were generally higher than measured ones. Conclusions: The results of this preliminary study provide evidence of toxicity and the presence of organic trace contaminants in beach sands from France. According to our results, monitoring using a combination of biotests and chemical analyses is recommended, especially of sediments from beaches abandoned to urban and industrial areas.
Resumo:
Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution. Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (δ2H, δ18O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of ∼ 1.4 × 106 m3 day−1. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼ 3.5 times a year), driving an estimated nitrogen (N) load of ∼ 350 Ton N yr−1 into the system as NO3−. Land-borne SGD could add a further ∼ 61 Ton N yr−1 to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.
Resumo:
The importance of nourishment processes on the beaches of Mediterranean Sea has been increasing since the end of the 20th century due to its socio-economical awareness (tourismboost) and environmental implications (possible impact on Posidonia oceanica meadows and important processes of dredging and earth movements). However, in many cases, and especially in eastern Spain, relevant actions have been made which had caused that, after 20 years, the beaches in which these works were carried out will be in a similar situation with the original one. The present study analyzed the Poniente Beach (Benidorm, Spain), a beach where the nourishment works of 1991 have caused the disappearance of the Posidonia oceanica meadows and a regression process that will lead to the disappearance of the beach in a few years. To this end, data from bathymetry, georeferenced orthophotos, grain size analysis and swell study have been obtained and analyzed, understanding the importance of the works done to be consistent with the environment in which they were developed, and providing a work process which can ensure the existence of the nourished beach starting from the maintenance of Posidonia oceanica meadows.
Resumo:
The objective of this Doctoral Thesis was monitoring, in trimestral scale, the coastal morphology of the Northeastern coast sections of Rio Grande do Norte State, in Brazil, which is an area of Potiguar Basin influenced by the oil industry activities. The studied sections compose coastal areas with intense sedimentary erosion and high environmental sensitivity to the oil spill. In order to achieve the general objective of this study, the work has been systematized in four steps. The first one refers to the evaluation of the geomorphological data acquisition methodologies used on Digital Elevation Model (DEM) of sandy beaches. The data has been obtained from Soledade beach, located on the Northeastern coast of Rio Grande Norte. The second step has been centered on the increasing of the reference geodetic infrastructure to accomplish the geodetic survey of the studied area by implanting a station in Corta Cachorro Barrier Island and by conducting monitoring geodetic surveys to understand the beach system based on the Coastline (CL) and on DEM multitemporal analysis. The third phase has been related to the usage of the methodology developed by Santos; Amaro (2011) and Santos et al. (2012) for the surveying, processing, representation, integration and analysis of Coastlines from sandy coast, which have been obtained through geodetic techniques of positioning, morphological change analysis and sediment transport. The fourth stage represents the innovation of surveys in coastal environment by using the Terrestrial Laser Scanning (TLS), based on Light Detection and Ranging (LiDAR), to evaluate a highly eroded section on Soledade beach where the oil industry structures are located. The evaluation has been achieved through high-precision DEM and accuracy during the modeling of the coast morphology changes. The result analysis of the integrated study about the spatial and temporal interrelations of the intense coastal processes in areas of building cycles and destruction of beaches has allowed identifying the causes and consequences of the intense coastal erosion in exposed beach sections and in barrier islands
Resumo:
This route planner, funded by the Palm Beach Metropolitan Planning Organization (MPO), is a joint effort by Florida International University GIS Center and University of Florida Geomatics Program at Fort Lauderdale Research and Education Center. It is designed as a planning tool for bicyclists. Assistance was received from the Palm Beach County Bicycle, Greenways, Pedestrian Advisory Committee.
Resumo:
The purpose of this study was to determine whether the needs of the physically handicapped traveler are being met by the hotels in the City of Miami Beach, Florida. A sample was drawn from the hotel population. Mail questionnaires and personal interviews were used as the methods for collecting the data from the sample. The data was compiled and a hotel mean was computed. A mean was also calculated from the standards recommended by the American National Standards Institute to the American Hotel and Motel Association. The statistical test, The Significance of Difference Between Two Means, was used to test the hypothesis. A significance of difference was found and the hypothesis: The hotels in the City of Miami Beach, Florida, are not meeting the needs of the physically handicapped traveler, was accepted.
Resumo:
Predicting the evolution of a coastal cell requires the identification of the key drivers of morphology. Soft coastlines are naturally dynamic but severe storm events and even human intervention can accelerate any changes that are occurring. However, when erosive events such as barrier breaching occur with no obvious contributory factors, a deeper understanding of the underlying coastal processes is required. Ideally conclusions on morphological drivers should be drawn from field data collection and remote sensing over a long period of time. Unfortunately, when the Rossbeigh barrier beach in Dingle Bay, County Kerry, began to erode rapidly in the early 2000’s, eventually leading to it breaching in 2008, no such baseline data existed. This thesis presents a study of the morphodynamic evolution of the Inner Dingle Bay coastal system. The study combines existing coastal zone analysis approaches with experimental field data collection techniques and a novel approach to long term morphodynamic modelling to predict the evolution of the barrier beach inlet system. A conceptual model describing the long term evolution of Inner Dingle Bay in 5 stages post breaching was developed. The dominant coastal processes driving the evolution of the coastal system were identified and quantified. A new methodology of long term process based numerical modelling approach to coastal evolution was developed. This method was used to predict over 20 years of coastal evolution in Inner Dingle Bay. On a broader context this thesis utilised several experimental coastal zone data collection and analysis methods such as ocean radar and grain size trend analysis. These were applied during the study and their suitability to a dynamic coastal system was assessed.
Resumo:
The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i) charcoal feeding on manure composition, and (ii) charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.). To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration); second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001) from 45.2% (0% AC) to 60.2% (9% AC) with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001) from 0% AC (N: 2.5%, P: 1.5%, K: 0.8%) to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%). Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.
Resumo:
The South Carolina Highway Patrol wants to ensure that you and your family have a safe trip as you enjoy your vacation on the South Carolina coast this summer. This is up-to-date traffic information and tips to help you get there and back safely.
Resumo:
Coastal ecotourism is one of the fastest growing leisure industries in the world and snorkelling is emerging as an important beach-based activity. Snorkelling has the potential to enhance biodiversity conservation when developed within environmental education framework. The aim of this study was to implement and evaluate snorkelling routes, in the Algarve (South Portugal), as a sustainable ecotourism offer. To achieve these objectives, three snorkelling routes were established at the pristine Marinha beach. After the diving experience, a face-to-face questionnaire survey was conducted to collect information about individuals' opinions regarding the underwater routes, their social demographic characteristics, ecological appreciation, opinions about beach facilities and trip expenditures. The survey was undertaken during the summer months of 2008 and 2009, and 202 people were interviewed. Data was analysed using univariate and multivariate statistic methods. Most respondents perceived the existence of routes to be good for the preservation of the local biodiversity and reported this experience as "good" or "excellent". The only difference in perceptions was observed by visitor snorkelling in groups of more than two people. Interviewers consider that emergency support and sanitary facilities are the most important beach support infrastructures. Overall, these routes seem to be an effective tool for developing ecological awareness in tourists, as they enhance the preservation and the understanding of the marine coastal environment.
Resumo:
The use of natural areas for underwater coastal marine activities such as snorkelling is growing, but the amount of ecological and socioeconomic data on these activities is scarce and relates mainly to coral reef areas. Three underwater self-guided routes were designed at Marinha Beach (Algarve, Portugal), based on scientific information, with in situ interpretation and guidance, as a way to enhance biodiversity awareness and, hence, reduce the probability of human impacts. The routes were implemented in two consecutive summer seasons and after each season, visual census techniques were used to describe flora composition and cover area (seaweeds and seagrasses) in order to understand patterns and evaluate human impacts. Snorkelers' opinions and perceptions about several issues related to the routes' environmental education role (e.g. role in enhancing biocliversity awareness) were investigated by questionnaire after the snorkelling activity. An inter-annual difference inflora assemblages was found, probably associated to natural variability, rather than snorkelers' impacts. Results indicate that, in fact, in situ education and interpretation can raise environmental awareness if properly addressed, resulting in a satisfactory way of engaging snorkelers in the protection and in the conservation of the visited environments, thereby preventing negative ecological impacts. (C) 2015 Elsevier Ltd. All rights reserved.