977 resultados para Saccharum ssp.
Resumo:
Thiamethoxam is a systemic insecticide from the neonicotinoid group, nitroguanidin family which affects the nicotinic receptor acetyl choline in the insect membrane, wounding the nervous system and causing the death of the insect. It was used with success in the control of initial pests of several crops. It was considered that thiamethoxam has a bioactivator effect, because in the absence of insects promoted increase in vigor, development and productivity of crops. This work was carried out to verify if thiamethoxam causes histological changes in sugarcane roots. In this work, it was used optical microscopy, images arrest, tissue biometrics and statistical analysis, in young roots of sugarcane RB 83 5486 after the treatments with different thiamethoxam concentrations. It was determined changes in histological structure of tissues 7, 14, 21 and 28 days after the treatments, establishing its effects on root plant anatomy. It was verified that thiamethoxam increased root cortex width, increasing the vascular cylinder and the metaxylem vessel elements number in the vascular tissue until 21 days after application.
Resumo:
Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as "molecular domestication", by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.
Resumo:
Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.
Resumo:
This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of alpha-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products. (C) 2012 Elsevier By. All rights reserved.
Resumo:
The aim of this study was to assess selective plating methodologies for the enumeration and identification of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis in fermented milks. Seven agar media (MRS with added sorbitol, clindamycin or vancomycin, acidified MRS, RCA with added aniline blue and dicloxacilin, M17 and ST) were evaluated. The results showed that RCA dicloxacilin agar was suitable for the selective enumeration of B. animalis ssp. lactis in fermented milk. Either MRS (acidified) or M17 agar could be used for enumeration of L. delbrueckii ssp. bulgaricus and S. thermophilus, respectively. MRS media containing antibiotics were effective for the enumeration of the probiotic organisms (L. rhamnosus and L. acidophilus) inoculated in fermented milks.
Resumo:
A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis ( FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T ( iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin( ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1 alpha, IL-1 beta, IL-17, TNF-alpha, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-beta analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-beta could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-beta, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-beta through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.
Resumo:
To shed light on the interactions occurring in fermented milks when using co-cultures of Streptococcus thermophilus with Lactobacillus bulgaricus (StLb) or Lactobacillus acidophilus (StLa), a new co-metabolic model was proposed and checked either in the presence of Inulin as a prebiotic or not. For this purpose, the experimental data of concentrations of substrates and fermented products were utilized in balances of carbon, reduction degree and ATP. S. thermophilus exhibited always quicker growth compared to the other two microorganisms, while the percentage of lactose fermented to lactic acid, that of galactose metabolized, and the levels of diacetyl and acetoin formed strongly depended on the type of co-culture and the presence of inulin. The StLb co-culture led to higher acetoin and lower diacetyl levels compared to StLa, probably because of more reducing conditions or limited acetoin dehydrogenation. Inulin addition to StLa suppressed acetoin accumulation and hindered that of diacetyl, suggesting catabolite repression of alpha-acetolactate synthase expression in S. thermophilus. Both co-cultures showed the highest ATP requirements for biomass growth and maintenance at the beginning of fermentation, consistently with the high energy demand of enzyme induction during lag phase. Inulin reduced these requirements making biomass synthesis and maintenance less energy-consuming. Only a fraction of galactose was released from lactose, consistently with the galactose-positive phenotype of most dairy strains. The galactose fraction metabolized without inulin was about twice that in its presence, which suggests inhibition of the galactose transport system of S. thermophilus by fructose released from partial inulin hydrolysis. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The environment most diverse in harvestmen species is the Atlantic Forest of Sao Paulo. However, there remains a lack of studies regarding their communities in certain regions. Among these regions is one south of the Paranapiacaba mountain range in the state of Sao Paulo, the Parque da Onca Parda (POP). Through nocturnal collections and pitfall traps, the region's harvestmen community has been studied. The observed richness of this site included 27 species, with dominance of three species: Holcobunus nigripalpis Roewer, 1910, Neosadocus maximus (Giltay, 1928) and Munequita sp., accounting for 68.4% of harvestmen abundance. This makes the diversity of POP more similar to the semideciduous Atlantic Forest communities of the interior than to those of the Coastal Atlantic Forest that contains the park. Its geographic location places it within the Southern Sao Paulo State (SSP) area of endemism, along with the Parque Turistico do Alto Ribeira (PETAR), with which it shares up to 12% similarity regarding harvestmen fauna. Richness and abundance of harvestmen were positively related to temperature and humidity. The period of animal activity (as measured by abundance and richness) varied throughout the night, being highest in the early hours during both studied seasons (summer and winter).
Resumo:
O objetivo deste trabalho foi parametrizar e avaliar o modelo DSSAT/Canegro para cinco variedades brasileiras de cana-de-açúcar. A parametrização foi realizada a partir do uso de dados biométricos e de crescimento das variedades CTC 4, CTC 7, CTC 20, RB 86-7515 e RB 83-5486, obtidos em cinco localidades brasileiras. Foi realizada análise de sensibilidade local para os principais parâmetros. A parametrização do modelo foi feita por meio da técnica de estimativa da incerteza de probabilidade generalizada ("generalized likelihood uncertainty estimation", Glue). Para a avaliação das predições, foram utilizados, como indicadores estatísticos, o coeficiente de determinação (R2), o índice D de Willmott e a raiz quadrada do erro-médio (RMSE). As variedades CTC apresentaram índice D entre 0,870 e 0,944, para índice de área foliar, altura de colmo, perfilhamento e teor de sacarose. A variedade RB 83-5486 apresentou resultados similares para teor de sacarose e massa de matéria fresca do colmo, enquanto a variedade RB 86-7515 apresentou valores entre 0,665 e 0,873, para as variáveis avaliadas.
Resumo:
Abstract Background Sugarcane (Saccharum spp.) has become an increasingly important crop for its leading role in biofuel production. The high sugar content species S. officinarum is an octoploid without known diploid or tetraploid progenitors. Commercial sugarcane cultivars are hybrids between S. officinarum and wild species S. spontaneum with ploidy at ~12×. The complex autopolyploid sugarcane genome has not been characterized at the DNA sequence level. Results The microsynteny between sugarcane and sorghum was assessed by comparing 454 pyrosequences of 20 sugarcane bacterial artificial chromosomes (BACs) with sorghum sequences. These 20 BACs were selected by hybridization of 1961 single copy sorghum overgo probes to the sugarcane BAC library with one sugarcane BAC corresponding to each of the 20 sorghum chromosome arms. The genic regions of the sugarcane BACs shared an average of 95.2% sequence identity with sorghum, and the sorghum genome was used as a template to order sequence contigs covering 78.2% of the 20 BAC sequences. About 53.1% of the sugarcane BAC sequences are aligned with sorghum sequence. The unaligned regions contain non-coding and repetitive sequences. Within the aligned sequences, 209 genes were annotated in sugarcane and 202 in sorghum. Seventeen genes appeared to be sugarcane-specific and all validated by sugarcane ESTs, while 12 appeared sorghum-specific but only one validated by sorghum ESTs. Twelve of the 17 sugarcane-specific genes have no match in the non-redundant protein database in GenBank, perhaps encoding proteins for sugarcane-specific processes. The sorghum orthologous regions appeared to have expanded relative to sugarcane, mostly by the increase of retrotransposons. Conclusions The sugarcane and sorghum genomes are mostly collinear in the genic regions, and the sorghum genome can be used as a template for assembling much of the genic DNA of the autopolyploid sugarcane genome. The comparable gene density between sugarcane BACs and corresponding sorghum sequences defied the notion that polyploidy species might have faster pace of gene loss due to the redundancy of multiple alleles at each locus.
Resumo:
Abstract Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.
Resumo:
Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.
Resumo:
Abstract Background Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae) known to carry a diversity of symbiotically-associated Proteobacteria. Results A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n = 7), Edessa meditabunda (n = 5), Loxa deducta (n = 4) and Pellaea stictica (n = 3) were all associated with three families. Piezodorus guildini (n = 3) and Nezara viridula (n = 3) had the lowest diversity, being associated with two (Propionibacteriaceae and Mycobacteriaceae) and one (Streptomyceataceae) families, respectively. Corynebacteriaceae and Mycobacteriaceae were the most common families with phylotypes from three different insect species each one. Conclusions Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the stinkbugs biology remain unknown.