937 resultados para SIGMA
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.
Resumo:
The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 mu m), two TAG lengths (13 or 17 mu m) and two loading conditions (perpendicular and oblique-25 degrees) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 mu m) were constructed: M1 - no HL and no TAG; M2 - 3 mu m of HL and 13 mu m of TAG; M3 - 3 mu m of HL and 17 mu m of TAG; M4 - 6 mu m of HL and 13 mu m of TAG; and M5 - 6 mu m of HL and 17 mu m of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25 degrees). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys (R), Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (sigma(vM)) and maximum principal stress (sigma(max)) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased sigma(vM) and sigma(max) in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigma(vM) and sigma(max) than TAG length. The peritubular dentin and its adjacent structures showed the highest sigma(vM) and sigma(max), mainly in the oblique loading.
Resumo:
Myotoxin II, a myotoxic calcium-independent phospholipase-like protein isolated from the venom of Bothrops asper, possesses no detectable phospholipase activity. The crystal structure has been determined and refined at 2.8 Angstrom to an R factor of 16.5% (F>3 sigma) with excellent stereochemistry. Amino-acid differences between catalytically active phospholipases and myotoxin LI in the Ca2+-binding region, specifically the substitutions Tyr28-->Asn, Gly32-->Leu and Asp49-->Lys, result in an altered local conformation. The key difference is that the epsilon-amino group of Lys49 fills the site normally occupied by the calcium ion in catalytically active phospholipases. In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus, myotoxin II is present as a dimer both in solution and in the crystalline state. The two molecules in the asymmetric unit are related by a nearly perfect twofold axis, yet the dimer is radically different from the dimer formed by the phospholipase from Crotalus atrox. Whereas in C. atrox the dimer interface occludes the active sites, in myotoxin II they are exposed to solvent.
Resumo:
The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.
Resumo:
To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the sigma(s) subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44-50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iciR, and fadR) achieved only medium cell densities (15-21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth, on a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the sigma(s) regulon to grow to high cell densities, at least not under the conditions tested.
Resumo:
The scheme named generator coordinate Hartree-Fock method (GCHF) is used to build (22s14p) and (33s22p16d9f) gaussian basis sets to S ((3)P) and Pt ((3)D) atoms, respectively. Theses basis sets are contracted to [13s10p] and [19s13p9d5f] through of Dunning's segmented contraction scheme and are enriched with d and g polarization functions, [13s10p1d] and [19s13p9d5flg]. Finally, the [19s13p9d5f1g] basis Set to Pt ((3)D) was supplemented with s and d diffuse functions, [20s13p10d5flg], and used in combination with [13s10p1d] to study the effects of adsorption of S ((3)D) atom on a pt ((3)D) atom belonged to infinite Pt (200) surface. Atom-atom overlap population, bond order, and infrared spectrum of [pt(_)S](2 -) were calculated properties and were carried out at Hartree-Fock-Roothaan level. The results indicate that the process of adsorption of S ((3)P) on pt ((3)D) in the infinite Pt (200) surface is mainly caused by a strong contribution of sigma between the 3p(z) orbital of S ((3)P) and the 6s orbital of pt ((3)D). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We couple non-linear sigma-models to Liouville gravity, showing that integrability properties of symmetric space models still hold for the matter sector. Using similar arguments for the fermionic counterpart, namely Gross-Neveu-type models, we verify that such conclusions must also hold for them, as recently suggested.
Resumo:
Calculations based on density functional theory have been carried out to investigate the free energy profiles at singlet and triplet electronic states associated with the gas-phase ion/molecule reactions of VO2++ ((1)A(1)/(3)A) with propene. The complex potential energy Surfaces, including Six reaction pathways (three dehydrogenation and three oxygen transfer processes), have been explored and analyzed. Along dehydrogenation reactive channels, three final products can be obtained: V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) and allene (path Dehl), being the most kinetically and thermodynamically favorable reaction pathway, V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) and propyne (path Deh2),and VO2+ ((1)A(1)/(3)A) and H-2 plus allene (path Deh3). The oxyoenation processes can yield its final products Vo(+) ((1)Delta/(3)Sigma) and acetone (path Ox1), VO+ ((1)Delta/(3)Sigma 2) and propanaldehyde (path Ox2), and VO+ ((1)Delta/(3)Sigma) and H-2 and propenaldehyde (path Ox3). Both paths Deh1 and Deh2 are associated with two consecutive hydrogen transfer processes from carbon atoms of the propene fragment to vanadyl oxygen atoms, while in path Deh3 the second hydrogen migration takes place to the vanadiurn atorn followed by the formation ola hydrogen molecule. Both paths Ox1 and Ox2 comprise an intramolecular hydrogen transfer between the ethylenic moiety of the propene fragment, while two consecutive hydrogen transfer processes take place from the propene fragment to oxygen and vanadium atoms of the vanadyl moiety along path Ox3. Three crossing points between both electronic states take place along path Deh1 (CP-Deh1) and path Deh2 (CP-Deh2) and in the entrance channel of oxidation processes (CP-Ox). A comparison with previous works on related reactions VO2+ + C2H4, VO2 + C2H6, and VO2+ + C3H8 allows us to rationalize the different reactivity patterns.
Resumo:
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the nonlinear sigma-model in two dimensions is worked out as an example.
Resumo:
The alternating conductivity, sigma*(f) = sigma'(f) + i sigma ''(f), of in situ polymerized polyaniline thin films doped with hydrochloric acid, deposited on top of an interdigitated gold line array previously deposited on glass substrates, were measured in the frequency (f) range between 0.1 Hz to 10 MHz and in the temperature range from 100 to 430 K. The results for sigma'(f) are typical of a disordered solid material: for frequencies lower than a certain hopping frequency gamma(hop), log[sigma'(f)] is frequency-independent rising almost linearly for in logf > gamma(hop). A master curve was thus obtained by plotting the real component of the conductivity using normalized scales sigma'(f)/sigma(dc) and f/gamma(hop) which is indicative of a single process operating in the whole frequency range. An expression encompassing the conduction through a disordered structure taken from previous random free energy barrier model for hopping carriers, as well a dielectric function to represent the capacitive behavior of the PAni was employed to fit the experimental results. The dielectric constant and activation energy for hopping carriers were obtained as function of the polymer doping level. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.
Resumo:
A set of sixteen para-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides structurally related to procaine was synthesized. The apparent partition coefficients were determined by either shake-flask or HPLC methods and were taken as hydrophobic parameters. The IR stretching frequencies of the carbonyl group were determined in chloroform and taken as one of the electronic parameters. Additional physicochemical parameters were either taken from the literature: pi, sigma, T and R, MR4, or calculated: log P. The lethal potency was determined in the mouse via the LD50. In order to verify the nature and the relative contributions of the physicochemical parameters to lethal toxicity, QSAR equations were derived using regression analysis. A major contribution of hydrophobicity to ether with a smaller but still significant contribution of electronic or polar properties was found to a describe the toxicity within this set of compounds.
Resumo:
The molecular mechanisms of the reaction VO2+ ((1)A(1)/(3)A'') + C2H6 ((1)A(g)) to yield V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) + C2H4 ((1)A(g)) and/or VO+ ((1)Delta/(3)Sigma) + H2O ((1)A(1)) + C2H4 (Ag-1) have been investigated with density functional theory (DFT) at the B3LYP/6-311G(2d,p) level. Calculations including geometry optimization, vibrational analysis, and Gibbs free energy for the stationary points on the reactive potential energy surfaces at both the singlet (s) and first excited triplet (t) electronic states have been carried out. The most thermodynamically and kinetically favorable pathway is the formation of t-V(OH)(2)(+) + C2H4 along a four-step molecular mechanism (insertion, two consecutive hydrogen transfers, and elimination). A crossing point between s and t electronic states has been characterized. A comparison with previous works on VO2+ + C2H4 (Gracia et al. J. Phys. Chem. A 2003, 107, 3107-3120) and VO2+ + C3H8 (Engeser et al. Organometallics 2003, 22, 3933-3943) reactions allows us a rationalization of the different reactivity patterns. The catalytic role of water molecules in the tautomerization process between hydrated oxide cation, VO(H2O)(+,) and dihydroxide cation, V(OH)(2)(+), is achieved by a water-assisted mechanism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.