873 resultados para Rutherford backscattering in channeling geometry
Resumo:
The possibility of using solar energy during winter depends on the available solar radiation and on the geometry of the receiving surface. For high latitudes, the annual distribution of the available radiation is characterized by high asymmetry with a large amount of solar radiation from high altitude angles during the summer and a small amount of direct radiation from small altitude angles during the winter. This article deals with the origin of the difference between available solar radiation during summer and winter at high latitudes. Factors like the tilt of the earth’s axis, the eccentricity of the earth’s orbit, absorption and scattering of radiation in the atmosphere and seasonal changes in the weather conditions are discussed. Numerical examples of how these factors contribute to the reduction of the winter radiation compared to the summer radiation on surfaces with different orientation in Stockholm, latitude 59.4°N, are given. It is shown that the influence of the atmosphere and seasonal changes in the climate, and not pure earth-sun geometry, are the main reasons why it is hard to utilize solar energy at high latitudes during the winter.
Resumo:
When a stationary solar concentrator is designed, the spatial distribution of the available irradiation is of vital interest. An irradiation distribution based only on solar geometry will look similar at different sites. The only difference is that the distribution of the incident irradiation is shifted to lower solar altitudes when latitude is increased. However, real irradiation distribution will show strong asymmetry at high latitude sites, since the winter irradiation is reduced by absorption and scattering in the atmosphere, and by seasonal changes in the climate. The reduced winter irradiation at high latitudes implies that the available annual radiation is concentrated to a narrower angular interval. This means that the degree of concentration that is possible increases with latitude.In the paper examples of irradiation distribution from different sites in Europe from latitude 38°N to 65°N are shown. The origin of the reduced winter irradiation with increased latitude is discussed, and numerical examples on the performance of different types of stationary concentrators for different latitudes are given.
Resumo:
In this paper the behavior of matter waves in suddenly terminated potential structures is investigated numerically. It is shown that there is no difference between a fully quantum mechanical treatment and a semiclassical one with regards to energy redistribution. For the quantum case it is demonstrated that there can be substantial reflection at the termination. The neglect of backscattering by the semiclassical method brings about major differences in the case of low kinetic energies. A simple phenomenological model is shown to partially explain the observed backscattering using dynamics of reduced dimensionality.
Resumo:
Recent developments in the field of ultracold gases has led to the production of degenerate samples of polar molecules. These have large static electric-dipole moments, which in turn causes the molecules to interact strongly. We investigate the interaction of polar particles in waveguide geometries subject to an applied polarizing field. For circular waveguides, tilting the direction of the polarizing field creates a periodic inhomogeneity of the interparticle interaction. We explore the consequences of geometry and interaction for stability of the ground state within the Thomas-Fermi model. Certain combinations of tilt angles and interaction strengths are found to preclude the existence of a stable Thomas-Fermi ground state. The system is shown to exhibit different behavior for quasi-one-dimensional and three-dimensional trapping geometries.
Resumo:
By modeling the spectral energy distribution (SED) of the W3 IRS5 high-mass star formation region and matching this model to observed data, we can constrain the physical parameters of the basic system geometry and cloud mass distribution. From these parameters, we hope to add to the understanding of high-mass star formation processes. In particular, we hope to determine if the geometries associated with lowmass star formation carry over into the high-mass regime.
Resumo:
Neste trabalho, estudamos a posição de átomos de F na estrutura cristalina do Si. As amostras foram pré-amorfizadas utilizando um feixe de Si de 200 keV e, após, implantadas com F. Então recristalizamos a camada amorfa através do processo de Epitaxia de Fase Sólida (EFS). Empregamos as técnicas de Espectrometria de Retroespalhamento Rutherford, na condição de canalização iônica, e de Análise por Reação Nuclear (NRA), através da reação ressonante ( ) O p F 16 19 , αγ , à 5 , 340 keV, para determinar a posição dos átomos de F e, depois, reproduzimos os resultados experimentais através do programa de simulação computacional chamado Simulação Adaptada de Canalização de Íons Rápidos em Sólidos (CASSIS - Channeling Adapted Simulation of Swift Ions in Solids). Os resultados obtidos apontam para duas possíveis combinações lineares distintas de sítios. Uma delas concorda com a proposta teórica de Hirose et al. (Materials Science & Engineering B – 91-92, 148, 2002), para uma condição experimental similar. Nessa configuração, os átomos de F estão na forma de complexos entre átomos de flúor e vacâncias (F-V). A outra combinação ainda não foi proposta na literatura e também pode ser pensada como um tipo de complexo F-V.
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.
Resumo:
We study the production and signatures of doubly charged Higgs bosons (DCHBs) in the process gamma gamma <-> H(--)H(++) at the e(-)e(+) International Linear Collider and CERN Linear Collider, where the intermediate photons are given by the Weizsacker-Willians and laser backscattering distributions.
Resumo:
In the present paper we develop an algorithm to solve the time dependent Ginzburg-Landau equations, by using the link variables technique, for circular geometries. In addition, we evaluate the Helmholtz and Gibbs free energy, the magnetization, and the number of vortices. This algorithm is applied to a circular sector. We evaluate the superconduting-normal magnetic field transition, the magnetization, and the superconducting density. Our results point out that, as we reduce the superconducting area, the nucleation field increases. Nevertheless, as the angular width of the circular sector goes to small values the asymptotic behavior is independent of the sample area. We also show that the value of the first nucleation field is approximately the same independently of the form of the circular sector. Furthermore, we study the nucleation of giant and multivortex states for the different shapes of the present geometry.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Plasma treatments are frequently employed to modify surface properties of materials such as adhesivity, hydrophobicity, oleophobicity etc. Present work deals with surface modification of common commercial polymers such as polyethylene terephthalate (PET) and polyurethane (PU) by an air dielectric barrier discharge (DBD) at atmospheric pressure. The DBD treatment was performed in a plain reactor in wire-duct geometry (non-uniform field reactor), which was driven by a 60 Hz power supply. Material characterization was carried out by water contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The plasma-induced modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. The AFM analysis reveals that the plasma treatment roughens the material surface. Due to these structural and morphological changes the surface of DBD-treated polymers becomes more hydrophilic resulting in enhanced adhesion properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.
Resumo:
In this work the effect of Gas Tungsten Arc Welding (GTAW) repairs on the axial fatigue strength of an AISI 4130 steel welded joint used in airframe critical to the flight-safety was investigated. Fatigue tests were performed at room temperature on 0.89 mm thick hot-rolled plates with constant amplitude and load ratio of R = 0.1, at 20 Hz frequency. Monotonic tensile tests, optical metallography and microhardness, residual stress and weld geometric factors measurements were also performed. The fatigue strength decreased with the number of GTAW repairs, and was related to microstructural and microhardness changes, as well as residual stress field and weld profile geometry factors, which gave origin to high stress concentration at the weld toe. (C) 2011 Elsevier B.V. All rights reserved.