887 resultados para Remote sensing images


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract : Images acquired from unmanned aerial vehicles (UAVs) can provide data with unprecedented spatial and temporal resolution for three-dimensional (3D) modeling. Solutions developed for this purpose are mainly operating based on photogrammetry concepts, namely UAV-Photogrammetry Systems (UAV-PS). Such systems are used in applications where both geospatial and visual information of the environment is required. These applications include, but are not limited to, natural resource management such as precision agriculture, military and police-related services such as traffic-law enforcement, precision engineering such as infrastructure inspection, and health services such as epidemic emergency management. UAV-photogrammetry systems can be differentiated based on their spatial characteristics in terms of accuracy and resolution. That is some applications, such as precision engineering, require high-resolution and high-accuracy information of the environment (e.g. 3D modeling with less than one centimeter accuracy and resolution). In other applications, lower levels of accuracy might be sufficient, (e.g. wildlife management needing few decimeters of resolution). However, even in those applications, the specific characteristics of UAV-PSs should be well considered in the steps of both system development and application in order to yield satisfying results. In this regard, this thesis presents a comprehensive review of the applications of unmanned aerial imagery, where the objective was to determine the challenges that remote-sensing applications of UAV systems currently face. This review also allowed recognizing the specific characteristics and requirements of UAV-PSs, which are mostly ignored or not thoroughly assessed in recent studies. Accordingly, the focus of the first part of this thesis is on exploring the methodological and experimental aspects of implementing a UAV-PS. The developed system was extensively evaluated for precise modeling of an open-pit gravel mine and performing volumetric-change measurements. This application was selected for two main reasons. Firstly, this case study provided a challenging environment for 3D modeling, in terms of scale changes, terrain relief variations as well as structure and texture diversities. Secondly, open-pit-mine monitoring demands high levels of accuracy, which justifies our efforts to improve the developed UAV-PS to its maximum capacities. The hardware of the system consisted of an electric-powered helicopter, a high-resolution digital camera, and an inertial navigation system. The software of the system included the in-house programs specifically designed for camera calibration, platform calibration, system integration, onboard data acquisition, flight planning and ground control point (GCP) detection. The detailed features of the system are discussed in the thesis, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The accuracy of the results was evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy were assessed. The second part of this thesis concentrates on improving the techniques of sparse and dense reconstruction. The proposed solutions are alternatives to traditional aerial photogrammetry techniques, properly adapted to specific characteristics of unmanned, low-altitude imagery. Firstly, a method was developed for robust sparse matching and epipolar-geometry estimation. The main achievement of this method was its capacity to handle a very high percentage of outliers (errors among corresponding points) with remarkable computational efficiency (compared to the state-of-the-art techniques). Secondly, a block bundle adjustment (BBA) strategy was proposed based on the integration of intrinsic camera calibration parameters as pseudo-observations to Gauss-Helmert model. The principal advantage of this strategy was controlling the adverse effect of unstable imaging networks and noisy image observations on the accuracy of self-calibration. The sparse implementation of this strategy was also performed, which allowed its application to data sets containing a lot of tie points. Finally, the concepts of intrinsic curves were revisited for dense stereo matching. The proposed technique could achieve a high level of accuracy and efficiency by searching only through a small fraction of the whole disparity search space as well as internally handling occlusions and matching ambiguities. These photogrammetric solutions were extensively tested using synthetic data, close-range images and the images acquired from the gravel-pit mine. Achieving absolute 3D mapping accuracy of 11±7 mm illustrated the success of this system for high-precision modeling of the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we develop a fast implementation of an hyperspectral coded aperture (HYCA) algorithm on different platforms using OpenCL, an open standard for parallel programing on heterogeneous systems, which includes a wide variety of devices, from dense multicore systems from major manufactures such as Intel or ARM to new accelerators such as graphics processing units (GPUs), field programmable gate arrays (FPGAs), the Intel Xeon Phi and other custom devices. Our proposed implementation of HYCA significantly reduces its computational cost. Our experiments have been conducted using simulated data and reveal considerable acceleration factors. This kind of implementations with the same descriptive language on different architectures are very important in order to really calibrate the possibility of using heterogeneous platforms for efficient hyperspectral imaging processing in real remote sensing missions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Remote Sensing has been used for decades, and more and more applications are added to its repertoire. With this study we aim to show the use of Remote Sensing in the field of vegetation recovery monitoring in burned areas and the added value of data with a high spatial resolution. This was done by analysing both Landsat 7 and 8 scenes, after the forest fire of summer 2012 in the parish of Calde, in the central region of Portugal, as well as an orthophoto produced with images acquired by an unmanned aerial vehicle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scale 1:500,000; 1 cm. equals 5 kilometers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The changes in time and location of surface temperature from a water body has an important effect on climate activities, marine biology, sea currents, salinity and other characteristics of the seas and lakes water. Traditional measurement of temperature is costly and time consumer due to its dispersion and instability. In recent years the use of satellite technology and remote sensing sciences for data acquiring and parameter and lysis of climatology and oceanography is well developed. In this research we used the NOAA’s Satellite images from its AVHRR system to compare the field surface temperature data with the satellite images information. Ten satellite images were used in this project. These images were calibrated with the field data at the exact time of satellite pass above the area. The result was a significant relation between surface temperatures from satellite data with the field work. As the relative error less than %40 between these two data is acceptable, therefore in our observation the maximum error is %21.2 that can be considered it as acceptable. In all stations the result of satellite measurements is usually less than field data that cores ponds with the global result too. As this sea has a vast latitude, therefore the different in the temperature is natural. But we know this factor is not the only cause for surface currents. The information of all satellites were images extracted by ERDAS software, and the “Surfer” software is used to plot the isotherm lines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very high resolution remotely sensed images are an important tool for monitoring fragmented agricultural landscapes, which allows farmers and policy makers to make better decisions regarding management practices. An object-based methodology is proposed for automatic generation of thematic maps of the available classes in the scene, which combines edge-based and superpixel processing for small agricultural parcels. The methodology employs superpixels instead of pixels as minimal processing units, and provides a link between them and meaningful objects (obtained by the edge-based method) in order to facilitate the analysis of parcels. Performance analysis on a scene dominated by agricultural small parcels indicates that the combination of both superpixel and edge-based methods achieves a classification accuracy slightly better than when those methods are performed separately and comparable to the accuracy of traditional object-based analysis, with automatic approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de Mestrado, Geomática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

On Rio Grande do Norte northern coast the process of sediment transport are intensely controlled by wind and sea (waves and currents) action, causing erosion and shoreline morphological instability. Due to the importance of such coastal zone it was realized the multi-spectral mapping and physical-chemical characterization of mudflats and mangroves aiming to support the mitigating actions related to the containment of the erosive process on the oil fields of Macau and Serra installed at the study area. The multi-spectral bands of 2000 and 2008 LANDSAT 5 TM images were submitted on the several digital processing steps and RGB color compositions integrating spectral bands and Principal Components. Such processing methodology was important to the mapping of different units on surface, together with field works. It was possible to make an analogy of the spectral characteristics of wetlands with vegetations areas (mangrove), showing the possibility to make a restoration of this area, contributing with the environmental monitoring of that ecosystem. The maps of several units were integrated in GIS environment at 1:60,000 scale, including the classification of features according to the presence or absence of vegetation cover. Thus, the strategy of methodology established that there are 10.13 km2 at least of sandy-muddy and of these approximately 0.89 km2 with the possibility to be used in a reforestation of typical flora of mangrove. The physical-chemical characterization showed areas with potential to introduce local species of mangrove and they had a pH above neutral with a mean of 8.4. The characteristic particle size is sand in the fine fractions, the high levels of carbonate, organic matter and major and trace element in general are concentrated where the sediment had the less particles size, showing the high correlation that those elements have with smaller particles of sediment. The application of that methodological strategy is relevant to the better understanding of features behavior and physical-chemical data of sediment samples collected on field allow the analysis of efficiency/capability of sandy-muddy to reforestation with local mangrove species for mitigation of the erosive action and coastal processes on the areas occupied by the oil industry

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The new generation of artificial satellites is providing a huge amount of Earth observation images whose exploitation can report invaluable benefits, both economical and environmental. However, only a small fraction of this data volume has been analyzed, mainly due to the large human resources needed for that task. In this sense, the development of unsupervised methodologies for the analysis of these images is a priority. In this work, a new unsupervised segmentation algorithm for satellite images is proposed. This algorithm is based on the rough-set theory, and it is inspired by a previous segmentation algorithm defined in the RGB color domain. The main contributions of the new algorithm are: (i) extending the original algorithm to four spectral bands; (ii) the concept of the superpixel is used in order to define the neighborhood similarity of a pixel adapted to the local characteristics of each image; (iii) and two new region merged strategies are proposed and evaluated in order to establish the final number of regions in the segmented image. The experimental results show that the proposed approach improves the results provided by the original method when both are applied to satellite images with different spectral and spatial resolutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding spatial patterns of land use and land cover is essential for studies addressing biodiversity, climate change and environmental modeling as well as for the design and monitoring of land use policies. The aim of this study was to create a detailed map of land use land cover of the deforested areas of the Brazilian Legal Amazon up to 2008. Deforestation data from and uses were mapped with Landsat-5/TM images analysed with techniques, such as linear spectral mixture model, threshold slicing and visual interpretation, aided by temporal information extracted from NDVI MODIS time series. The result is a high spatial resolution of land use and land cover map of the entire Brazilian Legal Amazon for the year 2008 and corresponding calculation of area occupied by different land use classes. The results showed that the four classes of Pasture covered 62% of the deforested areas of the Brazilian Legal Amazon, followed by Secondary Vegetation with 21%. The area occupied by Annual Agriculture covered less than 5% of deforested areas; the remaining areas were distributed among six other land use classes. The maps generated from this project ? called TerraClass - are available at INPE?s web site (http://www.inpe.br/cra/projetos_pesquisas/terraclass2008.php)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le nerprun bourdaine (Rhamnus frangula L.) est une espèce exotique qui envahit plusieurs régions du sud du Québec, et plus particulièrement la région administrative de l'Estrie. Actuellement, on connaît encore peu l'écologie de l'espèce dans le contexte québécois et il n’existe pas de portrait d’ensemble de sa distribution dans les forêts tempérées de cette région. Dans ce contexte, le premier objectif du projet était de cartographier par télédétection la distribution du nerprun bourdaine dans deux secteurs de l'Estrie. Un second objectif était d'évaluer les variables environnementales déterminantes pour expliquer le recouvrement de nerprun bourdaine. La phénologie du nerprun bourdaine diffère de celle de la plupart des espèces indigènes arborescentes puisque ses feuilles tombent plus tard en automne. Cette caractéristique a permis de cartographier, par démixage spectral, la probabilité d'occurrence du nerprun bourdaine grâce à une série temporelle d'images du capteur OLI de Landsat 8. Le recouvrement du nerprun bourdaine a été calculé dans 119 placettes sur le terrain. La cartographie résultante a montré un accord de 69% avec les données terrain. Une image SPOT-7, dont la résolution spatiale est plus fine, a ensuite été utilisée, mais n’a pas permis d'améliorer la cartographie, puisque la date d’acquisition de l’image n’était pas optimale dû à un manque de disponibilité. Concernant le second objectif de la recherche, la variable la plus significative pour expliquer la présence de nerprun bourdaine était la densité du peuplement, ce qui suggère que l’ouverture de la couverture forestière pourrait favoriser l’envahissement. Néanmoins, les résultats tendent à démontrer que le nerprun bourdaine est une espèce «généraliste» qui s’adapte bien à plusieurs conditions environnementales.