914 resultados para Refractive index


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma polymer films are very attractive for industrial applications in several sectors such as in the electronic, mechanic, biomedic, coating and others, due to its good adhesion, being insoluble in mild acids and bases and having a high crosslinking structure. This work reports the physical, structural, and surface properties of the polymer obtained from an acetylene plasma polymerization technique and treated by dielectric barrier discharge (DBD). The film was deposited in a reactor supplied by a radio-frequency power source at low pressure. After deposition, the nanofilms were treated in a DBD plasma reactor operating in air. The treatment times varied from 1 to 5 min. The analysis of molecular structure of the samples was investigated by FTIR spectroscopy, showing absorption bands in 3480, 2930, 1720, 1450 and 1380 cm(-1). The water contact-angle was investigated by goniometric technique and presented values from 5 to 65 degrees. The aging effect of these films was also studied. The alteration in the films surface morphology was assessed by an atomic force microscopy (AFM) which indicated that the roughness increased from 60 nm to 160 nm as a result of the DBD treatment. The refractive index of the samples presented values near 1.7, measured by UV-Visible spectroscopy. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin polymeric films deposited by plasma are very atractive for many industrial and scientific applications, in areas such as electronics, mechanics, coatings, biomaterials, among others, due to its favorable properties such as good adhesion to the substrate, high crosslinking, nanomectric thickness, homogeneity, etc. In this work, thin films were deposited by plasma immersion ion implantation and deposition technique from a hexamethyldisilazane/argon mixture at different proportions. These films were subjected to several characterizations, such as, contact angle, which presented values near to 100 degrees, surface energy, with values near to 31 mJ/m2, hardness with values between 0.7 and 2.6 GPa, thickness from 100 to 200 nm, refractive index from 1.56 to 1.64, molecular structure presenting the following functional groups in the infrared spectra region: CHx from 2960 to 2900 cm-1; Si-H around 2130 cm-1; CH3 in Si-(CH3)x around 1410 cm-1; CH3 in Si-(CH3)x in 1260 cm-1; N-H around 1180 cm-1; CH2 in Si-CH2-Si bonds around 1025 cm-1; Si-O in Si-O-Si from 1020 to 1100 cm-1; Si-N in Si-H-Si bonds around 940 cm-1; CH3 in Si-(CH3)3 in 850 cm-1; Si-C bonds in Si-(CH3)2 around 800 cm-1; and Si-H in 680 cm-1 . From these characterizations, it was possible to conclude that the concentration of argon or hexamethyldisilazane in the mixture changed the resulting polymer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents experimental results of some physical properties of antimony phosphate glasses with compositions (x) Sb2O3 - (1-x) P2O5 (x = 0.75, 0.85, 0.90). Mechanical, thermal, optical and electrical properties were investigated: density, elastic moduli (Young's moduli and Poisson's ratio), Vickers microhardness, coefficient of thermal expansion, glass transition temperature, refractive index and electrical conductivity (for x = 0.75). There was no evidence of electronic conductivity by bipolaron hopping. Measurements of energy dispersive spectroscopy (EDS) showed that volatilization of Sb2O3 takes place during the glass melting

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planar waveguides with controlled refractive index were produced using thin films of sol-gel derived organic-inorganic hybrids, so called di-ureasils. Spectroscopic ellipsometry was used to characterize the films thickness and refractive index. UV-laser direct-writing method was used to produce Y-splitter structures with coupling ratio of 50% without the need of photoinitiators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work evaluates fluorinated thin films and their composites for sensor development. Composites were produced using 5 µm starch particles and plasma films obtained from organic fluorinated and silicon compounds reactants. Silicon wafers and aluminum trenches were used as substrates. Film thickness, refractive index and chemical structure were also determined. Scanning electron microscopy shows conformal deposition on aluminum trenches. Films deposited on silicon were exposed to vapor of volatile organic compounds and CV curves were obtained. A qualitative model (FemLab 3.2® program) was proposed for the electronic behavior. These environmentally correct films can be used in electronic devices and preferentially reacted to polar compounds. Nonetheless, due to the difficulty in signal recovery, these films are more effective in one-way sensors, in sub-ppm range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Refractive and profilometric measurements of lenses were performed through holography with a photorefractive Bi12TiO20 crystal as the recording medium. Two properly aligned diode lasers emitting in the red region were employed as light sources. Both lasers were tuned in order to provide millimetric and sub-millimetric synthetic wavelengths. The surfaces of the test lens were covered by a 25-μm opaque plastic tape in order to allow the lens profilometry upon illuminating them with a collimated beam. The resulting holographic images appear covered by interference fringes corresponding to the wavefront geometry of the wave scattered by the lens. For refractive index measurement a diffusely scattering flat surface was positioned behind the uncovered lens which was also illuminated by a plane wave. The resulting contour interferogram describes the form of the wavefront after the beam traveled back and forth through the lens. The fringe quantitative evaluation was carried out through the four-stepping technique and the resulting phase map and the Branch-cut method was employed for phase unwrapping. The only non-optical procedure for lens characterization was the thickness measurement, made by a dial caliper. Exact ray tracing calculation was performed in order to establish a relation between the output wavefront geometry and the lens parameters like radii of curvature, thickness and refractive index. By quantitatively comparing the theoretical wavefront geometry with the experimental results relative uncertainties bellow 3% for refractive index and 1 % for focal length were obtained. © 2008 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polymeric precursor solution was used to deposit pure and Mg doped LiNbO3 thin films on sapphire substrates by spin-coating. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. Phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)