874 resultados para Recontextualised found object
Resumo:
OBJECTIVES: In 2009, CTX-M Enterobacteriaceae and Salmonella isolates were recovered from a UK pig farm, prompting studies into the dissemination of the resistance and to establish any relationships between the isolates. METHODS: PFGE was used to elucidate clonal relationships between isolates whilst plasmid profiling, restriction analysis, sequencing and PCR were used to characterize the CTX-M-harbouring plasmids. RESULTS: Escherichia coli, Klebsiella pneumoniae and Salmonella 4,5,12:i:- and Bovismorbificans resistant to cefotaxime (n = 65) were recovered and 63 were shown by PCR to harbour a group 1 CTX-M gene. The harbouring hosts were diverse, but the group 1 CTX-M plasmids were common. Three sequenced CTX-M plasmids from E. coli, K. pneumoniae and Salmonella enterica serotype 4,5,12:i:- were identical except for seven mutations and highly similar to IncI1 plasmid ColIb-P9. Two antimicrobial resistance regions were identified: one inserted upstream of yacABC harbouring ISCR2 transposases, sul2 and floR; and the other inserted within shfB of the pilV shufflon harbouring the ISEcp1 transposase followed by blaCTX-M-1. CONCLUSIONS: These data suggest that an ST108 IncI1 plasmid encoding a blaCTX-M-1 gene had disseminated across multiple genera on this farm, an example of horizontal gene transfer of the blaCTX-M-1 gene.
Resumo:
Rocket species have been shown to have very high concentrations of glucosinolates and flavonols, which have numerous positive health benefits with regular consumption. In this review we highlight how breeders and processors of rocket species can utilize genomic and phytochemical research to improve varieties and enhance the nutritive benefits to consumers. Plant breeders are increasingly looking to new technologies such as HPLC, UPLC, LC-MS and GC-MS to screen populations for their phytochemical content to inform plant selections. Here we collate the research that has been conducted to-date in rocket, and summarise all glucosinolate and flavonol compounds identified in the species. We emphasize the importance of the broad screening of populations for phytochemicals and myrosinase degradation products, as well as unique traits that may be found in underutilized gene bank resources. We also stress that collaboration with industrial partners is becoming essential for long-term plant breeding goals through research.
Resumo:
Recent evidence from animal and adult human subjects has demonstrated potential benefits to cognition from flavonoid supplementation. This study aimed to investigate whether these cognitive benefits extended to a sample of school-aged children. Using a cross-over design, with a wash out of at least seven days between drinks, fourteen 8-10 year old children consumed either a flavonoid-rich blueberry drink or matched vehicle. Two hours after consumption, subjects completed a battery of five cognitive tests comprising the Go-NoGo, Stroop, Rey’s Auditory Verbal Learning Task, Object Location Task, and a Visual N-back. In comparison to vehicle, the blueberry drink produced significant improvements in the delayed recall of a previously learned list of words, showing for the first time a cognitive benefit for acute flavonoid intervention in children. However, performance on a measure of proactive interference indicated that the blueberry intervention led to a greater negative impact of previously memorised words on the encoding of a set of new words. There was no benefit of our blueberry intervention for measures of attention, response inhibition or visuo-spatial memory. While findings are mixed, the improvements in delayed recall found in this pilot study suggest that, following acute flavonoid-rich blueberry interventions, school aged children encode memory items more effectively.
Resumo:
Summary and discussion of the work of the Nazareth Archaeological Project between 2004-2010, focussing on the discovery of a first-century AD house below the 'lost' Byzantine 'Church of the Nutrition', said to have been built over the house where Jesus Christ was brought up.
Resumo:
The field of museum geography is taking on new significance as geographers and museum-studies scholars make sense of the spatial relations between the people, things, practices and buildings that make and remake museums. In order to strengthen this spatial interest in museums, this paper makes important connections between recent work in cultural geography and museum studies on love, materiality and the museum effect. This paper marks a departure from the preoccupation with the public spaces of museums to go behind the scenes of the Science Museum in London to explore its rarely visited, but nonetheless lively, small-to-medium-sized object storerooms at Blythe House. Incorporating field diary entries and interview extracts from two research projects based upon the museum storerooms at Blythe House, this paper brings to life the social interactions that take place between museum curators and conservators and the objects they care for. This focus on object-love enables scholars to consider anew what museums are and what they are for, the life of the museum object in the storeroom, and the emotional practices of professional curatorship and conservation. This journey into the storeroom at Blythe House makes explicit how object-love shapes museum space.
Resumo:
Perception is linked to action via two routes: a direct route based on affordance information in the environment and an indirect route based on semantic knowledge about objects. The present study explored the factors modulating the recruitment of the two routes, in particular which factors affecting the selection of paired objects. In Experiment 1, we presented real objects among semantically related or unrelated distracters. Participants had to select two objects that can interact. The presence of distracters affected selection times, but not the semantic relations of the objects with the distracters. Furthermore, participants first selected the active object (e.g. teaspoon) with their right hand, followed by the passive object (e.g. mug), often with their left hand. In Experiment 2, we presented pictures of the same objects with no hand grip, congruent or incongruent hand grip. Participants had to decide whether the two objects can interact. Action decisions were faster when the presentation of the active object preceded the presentation of the passive object, and when the grip was congruent. Interestingly, participants were slower when the objects were semantically but not functionally related; this effect increased with congruently gripped objects. Our data showed that action decisions in the presence of strong affordance cues (real objects, pictures of congruently gripped objects) relied on sensory-motor representation, supporting the direct route from perception-to-action that bypasses semantic knowledge. However, in the case of weak affordance cues (pictures), semantic information interfered with action decisions, indicating that semantic knowledge impacts action decisions. The data support the dual-route account from perception-to-action.
Resumo:
This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.
Resumo:
Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.
Resumo:
We obtained long-slit spectra of high signal-to-noise ratio of the galaxy M32 with the Gemini Multi-Object Spectrograph at the Gemini-North telescope. We analysed the integrated spectra by means of full spectral fitting in order to extract the mixture of stellar populations that best represents its composite nature. Three different galactic radii were analysed, from the nuclear region out to 2 arcmin from the centre. This allows us to compare, for the first time, the results of integrated light spectroscopy with those of resolved colour-magnitude diagrams from the literature. As a main result we propose that an ancient and an intermediate-age population co-exist in M32, and that the balance between these two populations change between the nucleus and outside one effective radius (1r(eff)) in the sense that the contribution from the intermediate population is larger at the nuclear region. We retrieve a smaller signal of a young population at all radii whose origin is unclear and may be a contamination from horizontal branch stars, such as the ones identified by Brown et al. in the nuclear region. We compare our metallicity distribution function for a region 1 to 2 arcmin from the centre to the one obtained with photometric data by Grillmair et al. Both distributions are broad, but our spectroscopically derived distribution has a significant component with [Z/Z(circle dot)] <= -1, which is not found by Grillmair et al.
Resumo:
K-band spectra of young stellar candidates in four Southern hemisphere clusters have been obtained with the Gemini Near-Infrared Spectrograph in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact H II regions. Spectral types were obtained by comparison of the observed spectra with those of a near-infrared (NIR) library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of C IV, N III and N V emission lines at 2.078, 2.116 and 2.100 mu m, respectively. One of them, I16177_IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated Ultra-Compact (UC) H II region shows the s-process [Kr III] and [Se IV] high excitation emission lines, previously identified only in planetary nebula. One young stellar object was found in each cluster, associated with either the main IRAS source or a nearby resolved Midecourse Space eXperiment (MSX) component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS 15408-5356, for which the spectroscopic distance is about a factor of 2 smaller than the kinematic value.
Resumo:
A novel mathematical framework inspired on Morse Theory for topological triangle characterization in 2D meshes is introduced that is useful for applications involving the creation of mesh models of objects whose geometry is not known a priori. The framework guarantees a precise control of topological changes introduced as a result of triangle insertion/removal operations and enables the definition of intuitive high-level operators for managing the mesh while keeping its topological integrity. An application is described in the implementation of an innovative approach for the detection of 2D objects from images that integrates the topological control enabled by geometric modeling with traditional image processing techniques. (C) 2008 Published by Elsevier B.V.