999 resultados para Receptor Noise
Resumo:
In this study, we assessed the mixed exposure of highway maintenance workers to airborne particles, noise, and gaseous co-pollutants. The aim was to provide a better understanding of the workers' exposure to facilitate the evaluation of short-term effects on cardiovascular health endpoints. To quantify the workers' exposure, we monitored 18 subjects during 50 non-consecutive work shifts. Exposure assessment was based on personal and work site measurements and included fine particulate matter (PM2.5), particle number concentration (PNC), noise (Leq), and the gaseous co-pollutants: carbon monoxide, nitrogen dioxide, and ozone. Mean work shift PM2.5 concentrations (gravimetric measurements) ranged from 20.3 to 321 μg m(-3) (mean 62 μg m(-3)) and PNC were between 1.6×10(4) and 4.1×10(5) particles cm(-3) (8.9×10(4) particles cm(-3)). Noise levels were generally high with Leq over work shifts from 73.3 to 96.0 dB(A); the averaged Leq over all work shifts was 87.2 dB(A). The highest exposure to fine and ultrafine particles was measured during grass mowing and lumbering when motorized brush cutters and chain saws were used. Highest noise levels, caused by pneumatic hammers, were measured during paving and guardrail repair. We found moderate Spearman correlations between PNC and PM2.5 (r = 0.56); PNC, PM2.5, and CO (r = 0.60 and r = 0.50) as well as PNC and noise (r = 0.50). Variability and correlation of parameters were influenced by work activities that included equipment causing combined air pollutant and noise emissions (e.g. brush cutters and chain saws). We conclude that highway maintenance workers are frequently exposed to elevated airborne particle and noise levels compared with the average population. This elevated exposure is a consequence of the permanent proximity to highway traffic with additional peak exposures caused by emissions of the work-related equipment.
Resumo:
Two monoclonal antibodies (mAb) directed against idiotypic determinants of the T cell receptor (anti-Ti) from HPB-ALL cells induce interleukin 2 (IL2) production in Jurkat T cells without evidence of binding to these cells as judged by fluorescence-activated cell sorter (FACS) analysis, indirect antibody-binding radioimmunoassay and direct binding studies with 125I-labeled mAb. The IL2 response induced by these mAb observed both in the presence and absence of phorbol myristate acetate was in the range of that obtained when Jurkat cells were stimulated with phytohemagglutinin or anti-T3 mAb (Leu 4). The idiotypic specificity of the two anti-HPB-ALL Ti mAb was demonstrated by several criteria. Both mAb bound specifically to HPB-ALL cells as determined by radioimmunoassay or FACS analysis but not with 8 other T cell lines. The anti-HPB-ALL Ti mAb precipitated a disulfide-linked heterodimer of 85 kDa only from 125I-labeled HPB-ALL cells and not from other cell lines tested. Incubation of HPB-ALL cells with anti-T3 abrogated the expression of T3 and induced co-modulation of the idiotypic structures detected by the two anti-HPB-ALL Ti mAb. Conversely, incubation of HPB-ALL cells with either one of the anti-Ti mAb abrogated the expression of T3 and of the idiotypic structures. Our results suggest that mAb with an apparent unique specificity for the receptor of the immunizing T cell line HPB-ALL can activate Jurkat cells by a very weak cross-reaction with these cells, which is not detectable by conventional binding tests.
Resumo:
Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ∼1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ∼1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.
Resumo:
Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).
Resumo:
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Resumo:
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.
Resumo:
Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target.
Resumo:
This study was conducted to assess the pharmacologic properties of the new orally active angiotensin II subtype I (AT1) antagonist UR-7247, a product with a half-life >100 h in humans. The experiment was designed as an open-label, single-dose administration study with four parallel groups of four healthy men receiving increasing single oral doses (2.5, 5, and 10 mg) of UR-7247 or losartan, 100 mg. Angiotensin II receptor blockade was investigated < or =96 h after drug intake, with three independent methods [i.e., the inhibition of blood pressure (BP) response to exogenous Ang II, an in vitro Ang II-receptor assay (RRA), and the reactive increase in plasma angiotensin II. Plasma drug levels also were measured. The degree of blockade observed in vivo was statistically significant < or = 96 h with all UR-7247 doses for diastolic BP (p < 0.05) and < or =48 h for systolic BP. The maximal inhibition achieved with 10 mg UR-7247 was measured 6-24 h after drug intake and reached 54 +/- 17% and 48 +/- 20% for diastolic and systolic responses, respectively. Losartan, 100 mg, induced a greater short-term AT1-receptor blockade than 2.5- and 5.0-mg doses of UR-7247 (p < 0.001 for diastolic BP), but the UR-7247 effect was longer lasting. In vivo, no significant difference was observed between 10 mg UR-7247 and 100 mg losartan 4 h after drug intake, but in vitro, the blockade achieved with 100 mg losartan was higher than that seen with UR-7247. Finally, the results confirm that UR-7247 has a very long plasma elimination half-life, which may be due to a high but also tight binding to protein binding sites. In conclusion, UR-7247 is a long-lasting, well-tolerated AT1 receptor in healthy subjects.
Resumo:
Kinase-linked receptors and nuclear receptors connect external cues to gene transcription. Among nuclear receptors, peroxisome proliferator-activated receptors (PPARs) are of special interest in relation to widespread human diseases. Mapping out connections between PPARs and kinase-linked receptor signaling is central to better understand physiological and pathophysiological processes and to better define therapeutic strategies. This is the aim of the present review.
Resumo:
Risperidone is metabolized by polymorphic enzymes, and a large variability in plasma concentration and therapeutic response is observed. Risperidone long-acting injection (RLAI) avoids the first-pass effect, and little is known about the influence of gene polymorphisms involved in its pharmacokinetics. The influence on plasma concentrations of risperidone (RIS), its metabolite 9-hydroxy-risperidone, and on adverse effects were investigated for polymorphisms of cytochrome P450 2D6 (CYP2D6) (*3, *4, *5, *6), CYP3A (CYP3A4*1B, CYP3A4 rs4646437, CYP3A5*3, CYP3A7*1C), ABCB1 (1236C>T, 2677G>T, 3435C>T), NR1/2 coding for pregnane X receptor (rs1523130, rs2472677, rs7643645), and for CYP3A activity measured by a phenotyping test. Forty-two patients with at least 4 consecutive unchanged doses of RLAI were included in a multicenter cross-sectional study. A 55% lower dose-adjusted plasma levels of RIS were observed for CYP2D6 ultrarapid metabolizers (n = 5) as compared with CYP2D6 intermediate metabolizers (P < 0.007). NR1/2 polymorphism (rs7643645A>G) influenced RIS exposure with a 2.8-fold lower active moiety (P = 0.031) in GG compared with the AA genotype. This was confirmed in a second independent cohort (n = 16). Furthermore, high-density lipoprotein cholesterol was positively correlated with CYP3A activity (P = 0.01), and the NR1/2 (rs2472677) polymorphism was associated with different adverse effects including prolactin plasma levels adjusted for age and sex. In conclusion, our results confirmed the influence of CYP2D6 genotype on plasma levels of RIS. This is the first report on the influence of NR1/2 polymorphisms on RLAI exposure and on drug-induced adverse effects. These results should be validated in larger cohorts.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors controlling the expression of genes involved in lipid homeostasis. PPARs activate gene transcription in response to a variety of compounds including hypolipidemic drugs as well as natural fatty acids. From the plethora of PPAR activators, Scatchard analysis of receptor-ligand interactions has thus far identified only four ligands. These are the chemotactic agent leukotriene B4 and the hypolipidemic drug Wy 14,643 for the alpha-subtype and a prostaglandin J2 metabolite and synthetic antidiabetic thiazolidinediones for the gamma-subtype. Based on the hypothesis that ligand binding to PPAR would induce interactions of the receptor with transcriptional coactivators, we have developed a novel ligand sensor assay, termed coactivator-dependent receptor ligand assay (CARLA). With CARLA we have screened several natural and synthetic candidate ligands and have identified naturally occurring fatty acids and metabolites as well as hypolipidemic drugs as bona fide ligands of the three PPAR subtypes from Xenopus laevis. Our results suggest that PPARs, by their ability to interact with a number of structurally diverse compounds, have acquired unique ligand-binding properties among the superfamily of nuclear receptors that are compatible with their biological activity.
Resumo:
Toll-like receptors (TLR) recognize pathogen associated molecular patterns, and the binding of their specific ligands triggers a proinflammatory response that helps to fight invading microorganisms, and can be harnessed to increase vaccine efficiency. The present study demonstrates that double-stranded RNA is a promising vaccine adjuvant able to increase both proliferation and activation of antigen-specific CD8(+) T cells. Importantly, TLR3 is required for this adjuvant effect, as TLR3 deficient recipients failed to enhance proliferation of adoptively transferred TCR transgenic CD8(+) T cells in the presence of double-stranded RNA. Finally, this study also shows that, in contrast to previous reports in humans, TLR3 does not exert direct costimulatory activity on CD8(+) T cells in mice.
Resumo:
The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)--major players of endodermal differentiation--into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.
Resumo:
Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.