940 resultados para ROTATIONAL RELAXATION
Resumo:
A systematic study of annealing behavior of drawn PMMA fibers was performed. Annealing dynamics were investigated under different environmental conditions by fiber longitudinal shrinkage monitoring. The shrinkage process was found to follow a stretched exponential decay function revealing the heterogeneous nature of the underlying molecular dynamics. The complex dependence of the fiber shrinkage on initial degree of molecular alignment in the fiber, annealing time and temperature was investigated and interpreted. Moreover, humidity was shown to have a profound effect on the annealing process, which was not recognized previously. Annealing was also shown to have considerable effect on the fiber mechanical properties associated with the relaxation of molecular alignment in the fiber. The consequences of fiber annealing for the climatic stability of certain polymer optical fiber-based sensors are discussed, emphasizing the importance of fiber controlled pre-annealing with respect to the foreseeable operating conditions.
Resumo:
The converse statement of the Filippov-Wazewski relaxation theorem is proven, more precisely, two differential inclusions have the same closure of their solution sets if and only if the right-hand sides have the same convex hull. The idea of the proof is examining the contingent derivatives to the attainable sets.
Resumo:
Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.
Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.
The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.
Resumo:
How do the magnetic fields of massive stars evolve over time? Are their gyrochronological ages consistent with ages inferred from evolutionary tracks? Why do most stars predicted to host Centrifugal Magnetospheres (CMs) display no H$\alpha$ emission? Does plasma escape from CMs via centrifugal breakout events, or by a steady-state leakage mechanism? This thesis investigates these questions via a population study with a sample of 51 magnetic early B-type stars. The longitudinal magnetic field \bz~was measured from Least Squares Deconvolution profiles extracted from high-resolution spectropolarimetric data. New rotational periods $P_{\rm rot}$ were determined for 15 stars from \bz, leaving only 3 stars for which $P_{\rm rot}$ is unknown. Projected rotational velocities \vsini~were measured from multiple spectral lines. Effective temperatures and surface gravities were measured via ionization balances and line profile fitting of H Balmer lines. Fundamental physical parameters, \bz, \vsini, and $P_{\rm rot}$ were then used to determine radii, masses, ages, dipole oblique rotator model, stellar wind, magnetospheric, and spindown parameters using a Monte Carlo approach that self-consistently calculates all parameters while accounting for all available constraints on stellar properties. Dipole magnetic field strengths $B_{\rm d}$ follow a log-normal distribution similar to that of Ap stars, and decline over time in a fashion consistent with the expected conservation of fossil magnetic flux. $P_{\rm rot}$ increases with fractional main sequence age, mass, and $B_{\rm d}$, as expected from magnetospheric braking. However, comparison of evolutionary track ages to maximum spindown ages $t_{\rm S,max}$ shows that initial rotation fractions may be far below critical for stars with $M_*>10 M_\odot$. Computing $t_{\rm S,max}$ with different mass-loss prescriptions indicates that the mass-loss rates of B-type stars are likely much lower than expected from extrapolation from O-type stars. Stars with H$\alpha$ in emission and absorption occupy distinct regions in the updated rotation-magnetic confinement diagram: H$\alpha$-bright stars are found to be younger, more rapidly rotating, and more strongly magnetized than the general population. Emission strength is sensitive both to the volume of the CM and to the mass-loss rate, favouring leakage over centrifugal breakout.
Resumo:
Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
Aims. Projected rotational velocities (ve sin i) have been estimated for 334 targets in the VLT-FLAMES Tarantula Survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods. Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results. Projected rotational velocities range up to approximately 450 kms-1 and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 0 <ve <100 km s-1 and the high velocity component having ve ∼ 250 km s-1. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions. The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars.While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations. © ESO 2013.
Resumo:
This paper presents a novel technique for mapping and exploration using cooperating autonomous underwater vehicles. Rather than using the typical lawnmower sweep pattern to search an entire area, the proposed navigational plan involves guiding the formation directly towards each object of interest in turn, before arriving at a final goal position. This is achieved by the use of traditional artificial potential fields alongside counter-rotational potential fields. These clockwise and counter-clockwise fields are employed simultaneously by vehicles to ensure that the entire object is scanned rather than simply avoided as is the case with traditional collision avoidance techniques. The proposed methodology allows a formation to have fluid-like motion whilst a separation distance between cooperating agents (free of angular constraints) is maintained with a greater degree of flexibility than traditional formation control approaches. Owing to its nature, this technique is suited for applications such as exploration, mapping and underwater inspection to name a few. Simulation results demonstrate the efficacy of the proposed approach.
Resumo:
Natural fibers can be used in rotational molding process to obtain parts with improved mechanical properties. Different approaches have been followed in order to produce formulations containing banana or abaca fiber at 5% weight, in two- and three-layer constructions. Chemically treated abaca fiber has also been studied, causing some problems in processability. Fibers used have been characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), optical microscopy, and single-fiber mechanical tests. Rotomolded parts have been tested for tensile, flexural, and impact properties, demonstrating that important increases in elastic modulus are achieved with these fibers, although impact properties are reduced. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The article is focused on analysis of global efficiency of new mold for rotational molding of plastic parts, being directly heated by thermal fluid. The overall efficiency is based on several items such as reduction of cycle time, better uniformity of heating-cooling and low energy consumption. The new tool takes advantage of additive fabrication and electroforming for making the optimal manifold and cavity shell of the mold. Experimental test of a prototype mold was carried out on an experimental rotational molding machine, developed for this purpose, measuring wall temperature, and internal air temperature, with and without plastic material inside. Results were compared with conventional mold heated into an oven and to theoretical simulations done by Computational Fluid Dynamic software (CFD). The analysis represents considerable improvement of cycle time related to conventional methods (heated by oven) and better thermal uniformity to conventional procedures by direct heating of oil with external channels. In addition to thermal analysis an energetic efficiency study was done. POLYM. ENG. SCI., 52:1998-2005, 2012. © 2012 Society of Plastics Engineers Copyright © 2012 Society of Plastics Engineers.
Resumo:
Rotational molding suffers from a relatively long cycle time, which hampers more widespread growth of the process. During each cycle, both the polymer and mold must be heated from room temperature to above polymer melting temperature and subsequently cooled to room temperature. The cooling time in this process is relatively long due to the poor thermal conductivity of plastics. Although rapid external cooling is possible, internal cooling rates are the major limitation. This causes the process to be uneconomical for large production runs of small parts. Various researchers have strived to minimize cycle times by applying various internal cooling procedures. This article presents a review of these methods, including computer simulations and practical investigations published to date. The effects of cooling rate on the morphology, shrinkage, warpage, and impact properties of rotationally molded polyolefins are also highlighted. In general, rapid and symmetrical cooling across the mold results in smaller spherulite size, increased mechanical properties and less potential warpage or distortion in moldings. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers.
Resumo:
Fibre-reinforced mouldings are of growing interest to the rotational moulding industry due to their outstanding price performance ratio. However, a particular problem that arises when using reinforcements in this process is that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this paper we report on studies to incorporate, short glass fibres into rotationally moulded parts. Four different approaches were investigated; direct addition of fibre in between two powder shots, addition of a layer of pre-compounded polyethylene-glass fibre pellets between two powder shots, addition of a layer of pre-compounded polyethylene-glass fibre powder between two powder shots and a single layer of glass-reinforced, pre-compounded powder. Results indicate that pre-compounding is necessary to gain performance enhancement and the single layer part made from glass-reinforced, pre-compounded powder exhibited the highest tensile and flexural modulus.
Resumo:
This paper details the results from a large European Union rotomoulding research project on the adaptation and development of industrial microwave oven technology to the rotational moulding process. Following computer modelling, an industrial scale microwave oven was specifically designed, manufactured and attached to the drop-arm of a convention rotational moulding machine where extensive moulding trials were carried out. The design and development of the microwave oven and test mould, together with the savings in terms of energy efficiency and mould heating rate that were achieved are discussed.