985 resultados para REACH-järjestelmä
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Studying the meiosis of two Hemiptera, mamely, Lybindus dichrous (Coreidae) and Euryophthalmus humilis (Pyrrhocoridae), the author has found new proofs in favor of the existence of a centromere at each end of the chromosomes of the insects belonging to that order. Following the behaviour of a pair of large autosomes of Lybindus, he was able to verify that in the first division of the spermatocytes, the tetrad they form divides transversely by the middle, giving rise to two V-shaped anaphase chromosomes that go to the poles with the vertex pointing forwardly. From the end of the first division till the metaphase of the second one, the centromeres occupying the vertex of the V go apart from one another, making the chiasmata existing there slip to the opposite extremities, what changes the V into an X. When the chiasmata reach the acentric ends, the X is again converted into a V. The V of the secondary metaphase, therefore, differs from the V of the primary anaphase, in being inverted that is, in having the centromeres in the extremity of its arms, and no longer in the vertex as in the latter. The opening out of the chromosomes starting at the centric extremities in order to recuperate the dumbbell shape they show in the secondary anaphase, just in the manner postulated by PIZA, is thus demonstrated. In Euryophthalmus humilis it was verified once more, that the heterochromosome, in the secondary spermatocytes, orients parallelly to the spindle axis, accompanying with its ends the anaphase plates as they move to the poles. The author is in disagreement with NORONHA-WAGNER & DUARTE DE CASTRO's interpretation of the behaviour of the chromosomes in meiosis of Luzula nemorosa.
Resumo:
The writers report results on the application of four fumigants (D. D., E. D. B.-40, C. B. P. and Vapam) for control of root-knot and meadow nematodes attacking potato in beds filled with soil artificially inoculated. The data obtained were as follows: a) as reported by previous authors, potato is sensitive to C.B.P., the toxical effects of which disapearing only about 6 and half months after application. On the other hand, C.B.P. proved to have a significative residual nematicidal value, protecting the seeds from root-knot nematodes for a period of two years; b) D. D., E. D. B., and Vapam were effective for controling root-knot but with no residual value, having to be used prior to each planting; c) at the rates used, no nematicide was effective to control meadow nematodes; d) in the conditions of the experiments, all nematicides incited attacks bv Streptomyces scabies. Actually, in some cases scab did not affect any tuber from the check while the entire production from the treated beds was heavily desfigured. The writers assume that as the nematicides killed protozoa and too many bacteria-eating nematodes, they destroyed the biological equilibrium existing in the soil, thus allowing the S. scabies population to reach a high level.
Resumo:
A population of Sesarma rectum Randall, 1840 under the influence of human impact was studied. Monthly sampling (CPUE, two people during 30 min) took place from August/2001 to July/2002 at an impacted muddy flat in Paraty city, State of Rio de Janeiro (23º13'S, 44º42'W). At the laboratory, specimens were classified by sex and measured with a vernier caliper (0.01 mm). The size at the beginning of the sexual maturity was obtained by means of different techniques: in the case of males it was used the allometric procedure and the macroscopic analysis of gonads wile for females, the size of the smallest ovigerous female was also considered. The population structure was evaluated by means the analysis of the variations in the modes of the size frequency distribution. The fecundity was assessed using sub samples of the egg mass. For males, the macroscopic analyses of gonads revealed larger values of carapace width than those obtained with morphometric analysis. Males larger than 18.5 mm of carapace width can be considered as mature. For females, such size was 17.4 mm CW. Despite of the human impact in the habitat, the population presented to be stable, as indicated by a single mode on the size frequency distribution. The second mode that appeared in some months is probably related to the entrance of juveniles in the population. The sex ratio of this population is closely approximating to 1:1 until crabs reach a carapace width of about 28 mm; after that, males outnumbered females. Comparing the fecundity of the present population with a previous study from Ubatuba, it can be verified a difference in the number of eggs. The fecundity of Paraty's population is significantly lower than the Ubatuba's population. This is probably related to the scarcity of food resource in Paraty, once no vascular plant can be found in that place. The continuity of reproductive processes and the juvenile recruitment suggest this species is able to live in the area with human impact. The ability to obtaining nutrients from different source of food is probably a feature that allows S. rectum to occupy such impacted ecosystem.
Resumo:
An analysis of the diet of Astyanax paranae Eigenmann, 1914 in nine streams located in the Passa-Cinco River basin (upper Paraná River system) was performed to investigate the feeding habits of this species, check for possible spatial variations in diet and to investigate the influence of riparian vegetation in the composition of the diet. Stomach contents of 243 specimens were analyzed by the methods of relative frequency of occurrence and volume, and the diet was characterized by the alimentary index (AIi). The species showed insectivorous feeding habits, with a predominance of terrestrial and aquatic insects in the diet, varying by location. In most streams, resources of allochthonous origin were the most consumed. The participation of aquatic insects and terrestrial plants were high in most streams, while terrestrial insects and invertebrates were highest in streams with a greater presence of riparian forest. The two streams located draining pasture fields were the only places were A. paranae consumed algae and macrophyte fragments. These results were corroborated by the analysis of similarity (ANOSIM): the descriptor "percentage of riparian forest" was the highest environmental influence on the diet of A. paranae. The study shows that riparian forest percentage on the stream reach determines the species diet composition, but A. paranae is also able to gather enough food resources in a variety of severely degraded environments.
Resumo:
Species of Chydoridae provide the main diversity of the Cladocera. These organisms have been the subject of many studies; some dealing with their role in energy flow in aquatic ecosystems, since they inhabit the littoral region of water bodies which undergo the first impacts from anthropic activities. The aim of this study is to increase knowledge about the life cycle of Coronatella rectangula (Sars, 1861), a species found in several water bodies in the state of Minas Gerais, Brazil. The life cycle was determined by the culture of parthenogenetic females under controlled conditions in the laboratory. Experimental cultures were maintained in growth chambers at a constant temperature of 23.6(±0.5)ºC, through a 12 h light/12 h dark photoperiod. The organisms were fed on a suspension of Pseudokirchneriella subcapitata (Chlorophyceae) (10(5) cells.mL-1), and 0.02 mL of a mixed suspension of yeast and fish ration added per organism in equal proportions (1:1). Fifty parthenogenetic females with eggs were isolated and maintained until they produced neonates. Thirty of these neonates that had less than 24 hours were put in polypropylene bottles of 50 mL and kept in a germination chamber. These organisms were observed daily to obtain the parameters of the life cycle. Biomass and secondary production were also calculated. The embryonic development time of the specimens of C. rectangula was 1.68(±0.13) days and the time to reach primipara, was 2.48(±0.45) days. The mean fecundity of C. rectangula was two eggs/female/brood and the total number of eggs produced by the female during its life cycle was 27.8 eggs. During the whole life cycle, specimens of C. rectangula had a maximum of 14 seedlings, with two instars in the juvenile stage. Total biomass for C. rectangula was 36.66 µgDW.m-3(9.83 for the juvenile stage and 26.82 µgDW.m-3 for adults), and secondary production was 12.10 µgDW.m-3.day-1(8.34 µgDW.m-3.day-1 for egg production and 3.76 µgDW.m-3.day-1 for the juvenile stage).
Resumo:
ABSTRACT One of the most important effects derived from the intensive land use is the increase of nutrient concentration in the aquatic systems due to superficial drainage. Besides, the increment of precipitations in South America connected to the global climate change could intensify these anthropic impacts due to the changes in the runoff pattern and a greater discharge of water in the streams and rivers. The pampean streams are singular environments with high natural nutrient concentrations which could be increased even more if the predictions of global climate change for the area are met. In this context, the effect of experimental nutrient addition on macroinvertebrates in a lowland stream is studied. Samplings were carried out from March 2007 to February 2009 in two reaches (fertilized and unfertilized), upstream and downstream from the input of nutrients. The addition of nutrients caused an increase in the phosphorus concentration in the fertilized reach which was not observed for nitrogen concentration. From all macroinvertebrates studied only two taxa had significant differences in their abundance after fertilization: Corbicula fluminea and Ostracoda. Our results reveal that the disturbance caused by the increase of nutrients on the benthic community depends on basal nutrients concentration. The weak response of macroinvertebrates to fertilization in the pampean streams could be due to their tolerance to high concentrations of nutrients in relation to their evolutionary history in streams naturally enriched with nutrients. Further research concerning the thresholds of nutrients affecting macroinvertebrates and about the adaptive advantages of taxa in naturally eutrophic environments is still needed. This information will allow for a better understanding of the processes of nutrient cycling and for the construction of restoration measures in natural eutrophic ecosystems.
Resumo:
1. In a series of 21 normal cases we found for fatty acids per 100 cc. of plasma an average of 332 mgm., being 314 mgm. for the male sex and 350 mgm. for the female sex. 2.- For lecithin, in four normal cases we found per 100 cc. of plasma 182 mgm. estimated by the contents is phosphorus which ranged from 6.12 to 9.0 mgrs. 3.- Cholesterol in 20 normal cases showed 172 mgm. per 100 cc. of plasma. The averages were 151 mgm. for men and 194 mgm. for women. 4.- The readings of the fractions were 2.01 for the ratio fatty acids divided by lecithins 0.90 for lecithin divided by cholesterol and 1.93 for fatty acids divided by cholesterol. 5.- On comparing the results obtained by us with those reported in foreign literature an absolute conformity is noted chiefly with the values supplied by Bloor and Horiuchi for the ratios among the various lipoid fractions. The average for Cholesterol is comparable with that obtained by Myers but is slightly under that of Bloor's. The lecithin contents found by us did not reach such high values as those supplied by foreign authors.
Resumo:
La finalitat del nostre estudi és valorar l’evolució de la flexibilitat de la cadena cinètica posterior en els escolars de 5 a 11 anys, i observar en quins grups d’edat és necessària l’aplicació de programes específics per a millorar-la. Els escolars varen ser sotmesos a les mateixes valoracions: el test de “sit and reach”, la pressa de les mesures antropomètriques, altura i pes, i el qüestionari Minesotta sobre el consum calòric en el temps de lleure. Dels resultats es desprèn que a mesura que augmenta l’edat, la flexibilitat dels escolars estudiats disminueix progressivament. Existeix un interval d’edat situat en els 9 anys que sembla marcar un canvi de tendència en la flexibilitat dels escolars. És a partir d’aquesta edat quan el grau de flexibilitat disminueix de forma significativa i, es més marcada entre els nens, sent necessària una intervenció més específica en ells.
Resumo:
In articles, already published, we have proved that the strain V. B. of Brazilian virus, goes through the placenta (Macacus rhesus) (1) and the apparently normal gastro-intestinal tube (1934-1937) (Canis familiaris) (2). Today we present the idea that the Brazilian virus can reach the milk of an animal even when the latter has only the unapparent disease. In former articles (**), we have shown that the goat (Capra hircus) can be an excellent reservoir of Brazilian virus, having the strain V. B. in its blood and presenting a Weil Felix reaction high and in group, with the disease unapparent. When the goats are bred in the laboratory, and even in some foci of the disease, they give a negative Weil Felix, being zero for all the nine strains of Proteus. In the interior of Brazil, in many localities, goats substitute cows, in supplying milk for children and adults, and in some districts goats milk is considered superior to cows milk, possessing marvellous qualities for men, women an children. Having proved, now, that goats milk can contain the virus even when the animal presents nothing clinically, and having also shown that this virus goes through the digestive tube apparently sound, it is easy to understand how infants-in-arms, that is, only a few months old, living in strictly domestic surroundings, can contract the disease; we have many such cases on record. Protocol of the experiments: Goat nº 2, white, January 1948. This animal had been inoculated with the V. B. strain of the Brazilian virus in June 1947, via intra-peritoneal, presenting nothing then, not even a feverish reaction. On that occasion it was not possible to isolate the virus of the blood, although the Weil Felix reaction was positive, high and in group. Now January 17, 1948, seven months later, the same animal was reinoculated with a semple of virus V. B. in the same manner (intra-peritoneal) two days after bringing forth two sturdy kids. The virus V. B. was obtained from guinea-pig n. 7170 whose thermic graph was as follows: Temperatura 38,8 39,1 39,5 39,4 39,8 40,4 40,2 40,1 - + Necropsy Typical lesions. The spleen weighed 5 grammes. With 3c.c. of emulsion from the nervous system of this guinea-pig, we inoculated not only the goat, as also two guineapigs, number 14 and number 5. The following is the thermic graph of one: - Guinea-pig n. 14 38,9 39,1 39,2 39.2 40,7 41,0 40,5 40,4 40,1 - + Typical lesions. Guinea-pig n. 2 presented the following thermic graph after the infective inoculation: - 39,5 39,7 39,7 39,7 39,5 39,3 39,5 39,5 39,5 etc. Clinically, this animal presented nothing unusual, feeding well and suckling the kids normally. The Weil Felix reaction was positive, in group high very similar to the reaction obtained in June 1947, with the first infective inoculation. On the third, fourth, fifth, sixth and seventh day after the infective inoculation, we took milk from the goat and inoculated male guinea-pigs via intra-celular and via intra-peritoneal, giving 5 c.c. to each animal. Guinea-pig n. 4663, inoculated with 5 c.c. of milk, via intra-muscular, taken on the third day of the infectaive inoculation, presented the following thermic graph: - 38.8 (*) 39,1 39,0 39,1 40,1 40,1 40,8 (**) 40,8 Killed Typical deisions (***). The virus V. B. of this goat, circulated naturally in the blood up to the third day, having passed into the milk, producing nothing in the kids, on account of the natural resistance of these animals to the disease. The Weil Felix reaction and that of Widal for the Burcellas suis, abortus and militensis were negative for the goat and the kids. It is remarkable that, even with inoculation of the living virus after a period of seven months we cannot get a real and absolute immunity of sensitive animals. We shall return to this subject later. The hart Mazama simplicicornis may be a carrier of the virus in Brasil. The experimental serum against the virus of Exanthematic neotropical typhus has not protected guinea-pigs.
Resumo:
Ma (1996) studied the random order mechanism, a matching mechanism suggested by Roth and Vande Vate (1990) for marriage markets. By means of an example he showed that the random order mechanism does not always reach all stable matchings. Although Ma's (1996) result is true, we show that the probability distribution he presented - and therefore the proof of his Claim 2 - is not correct. The mistake in the calculations by Ma (1996) is due to the fact that even though the example looks very symmetric, some of the calculations are not as ''symmetric.''
Resumo:
This paper presents evidence that the existence of deposit and lending facilities combined with an averaging provision for the reserve requirement are powerful tools to stabilize the overnight rate. We reach this conclusion by comparing the behavior of this rate in Germany before and after the start of the EMU. The analysis of the German experience is useful because it allows to isolate the effects on the overnight rate of these particular instruments of monetary policy. To show that this outcome is a general conclusion and not a particular result of the German market, we develop a theoretical model of reserve management which is able to reproduce our empirical findings.
Resumo:
We analyze situations in which a group of agents (and possibly a designer) have to reach a decision that will affect all the agents. Examples of such scenarios are the location of a nuclear reactor or the siting of a major sport event. To address the problem of reaching a decision, we propose a one-stage multi-bidding mechanism where agents compete for the project by submitting bids. All Nash equilibria of this mechanism are efficient. Moreover, the payoffs attained in equilibrium by the agents satisfy intuitively appealing lower bounds..
Resumo:
Report for the scientific sojourn carried out at the Model-based Systems and Qualitative Reasoning Group (Technical University of Munich), from September until December 2005. Constructed wetlands (CWs), or modified natural wetlands, are used all over the world as wastewater treatment systems for small communities because they can provide high treatment efficiency with low energy consumption and low construction, operation and maintenance costs. Their treatment process is very complex because it includes physical, chemical and biological mechanisms like microorganism oxidation, microorganism reduction, filtration, sedimentation and chemical precipitation. Besides, these processes can be influenced by different factors. In order to guarantee the performance of CWs, an operation and maintenance program must be defined for each Wastewater Treatment Plant (WWTP). The main objective of this project is to provide a computer support to the definition of the most appropriate operation and maintenance protocols to guarantee the correct performance of CWs. To reach them, the definition of models which represent the knowledge about CW has been proposed: components involved in the sanitation process, relation among these units and processes to remove pollutants. Horizontal Subsurface Flow CWs are chosen as a case study and the filtration process is selected as first modelling-process application. However, the goal is to represent the process knowledge in such a way that it can be reused for other types of WWTP.
Resumo:
A description of the species Lymnaea diaphana King, 1830 is presented, on the basis of material collected at its type-locality, San Gregorio, on the north coast of the Strait of Magellan, in the Chilean province of Magallanes. It may be identified by the following characters taken together: adult shell over 10 mm in length, whorls inflated, regularly convex, separated by a well-marked suture, aperture ovate occupying about half the shell length; renal organ forming an approximately right angle with the ureter; pouch of the oviduct well noticeable high on the right ventral surface and on the right side of the nidamental gland; uterus bent to the right into an approximately right angle; body of the spermatheca projected into the pulmonary cavity and adhered to the pericardium and to the roof of the pulmonary cavity; spermiduct highly sinuous, folding dorsalward between the left half of the oviduct and the left shoulder of the nidamental gland, and then winding on ventralward to reach the prostate on the middle line; prostate voluminous, convex on the left, pushed in on the right, with a deep dorsal furrow corresponding to a fold which projects into the prostatic lumen and is more developed at the fore half of the organ; apical end of the penial sheath with about six minute protuberances corresponding to inner chambers; prepuce from about as long about twice as long as the penial sheath, with some variation beyond those limits; lateral teeth of the radula basically tricuspid, with a usually simple ectocone which may show a bifid or trifid point. A diagnosis between lymnaea diaphana and three other lymnaeids which also occur in South America and were previously studied by the author - L. columella, L. viatrix and L. rupestris - is presented.