826 resultados para QUALITY ASSURANCE
Resumo:
This study is motivated by, and proceeds from, a central interest in the importance of evaluating IS service quality and adopts the IS ZOT SERVQUAL instrument (Kettinger & Lee, 2005) as its core theory base. This study conceptualises IS service quality as a multidimensional formative construct and seeks to answer the main research questions: “Is the IS service quality construct valid as a 1st-order formative, 2nd-order formative multidimensional construct?” Additionally, with the aim of validating the IS service quality construct within its nomological net, as in prior service marketing work, Satisfaction was hypothesised as its immediate consequence. With the goal of testing the above research question, IS service quality and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS), employing 219 valid responses, largely evidenced the validity of IS service quality as a multidimensional formative construct. The nomological validity of the IS service quality construct was also evidenced by demonstrating that 55% of Satisfaction was explained by the multidimensional formative IS service quality construct.
Resumo:
Business process management (BPM) is becoming the dominant management paradigm. Business process modelling is central to BPM, and the resultant business process model the core artefact guiding subsequent process change. Thus, model quality is at the centre, mediating between the modelling effort and related growing investment in ultimate process improvements. Nonetheless, though research interest in the properties that differentiate high quality process models is longstanding, there have been no past reports of a valid, operationalised, holistic measure of business process model quality. In attention to this gap, this paper reports validation of a Business Process Model Quality measurement model, conceptualised as a single-order, formative index. Such a measurement model has value as the dependent variable in rigorously researching the drivers of model quality; as antecedent of ultimate process improvements; and potentially as an economical comparator and diagnostic for practice.
Resumo:
Effective streaming of video can be achieved by providing more bits to the most important region in the frame at the cost of reduced bits in the less important regions. This strategy can be beneficial for delivering high quality videos in mobile devices, especially when the availability of bandwidth is usually low and limited. While the state-of-the-art video codecs such as H.264 may have been optimised for perceived quality, it is hypothesised that users will give more attention to interesting region/object when watching videos. Therefore, giving a higher quality to region of interest (ROI)while reducing quality of other areas may result in improving the overall perceived quality without necessarily increasing the bitrate. In this paper, the impact of ROI-based encoded video on perceived quality is investigated by conducting a user study for varous target bitrates. The results from the user study demonstrate that ROI-based video coding has superior perceived quality compared to normal encoded video at the same bitrate in the lower bitrate range.
Resumo:
There are an increasing number of compression systems available for treatment of venous leg ulcers and limited evidence on the relative effectiveness of these systems. The purpose of this study was to conduct a randomised controlled trial to compare the effectiveness of a 4-layer compression bandage system with Class 3 compression hosiery on healing and quality of life in patients with venous leg ulcers. Data were collected from 103 participants on demographics, health, ulcer status, treatments, pain, depression and quality of life for 24 weeks. After 24 weeks, 86% of the 4-layer bandage group and 77% of the hosiery group were healed (p=0.24). Median time to healing for the bandage group was 10 weeks, in comparison to 14 weeks for the hosiery group (p=0.018). Cox proportional hazards regression found participants in the 4-layer system were 2.1 times (95% CI 1.2–3.5) more likely to heal than those in hosiery, while longer ulcer duration, larger ulcer area and higher depression scores significantly delayed healing. No differences between groups were found in quality of life or pain measures. Findings indicate these systems were equally effective in healing patients by 24 weeks, however a 4-layer system may produce a more rapid response.
Resumo:
Design-build (DB) system is well-known to be a popular and effective delivery method of construction work worldwide. It has been demonstrated as superior to the traditional delivery system in regards to time and cost performance. However, it suffers a major flaw, in that the performance of project quality cannot be guaranteed. This paper aims to investigate the underlying factors attributing to the poor quality performance of design-build projects in Queensland. Five major factors were first identified through a comprehensive literature review, which relate to (1) project briefing and scope definition, (2) client’s role and responsibility, (3) procurement selection, (4) contractor’s incentive, and (5) design document quality. A questionnaire survey with 127 DB professionals was conducted to determine how these factors affect various quality criteria, i.e. functional quality, architectural quality, technical quality, workmanship quality, client satisfaction and overall quality. With the architectural quality reduced greatly, the research findings reveal that the DB projects in Queensland have the reduced overall quality compared with traditional projects. The impacts of different factors on the quality performance of DB projects have been closely examined and summarized. The research findings will facilitate project stakeholder’s better understanding of the delivery process of the DB system and provide guidelines to improve the quality performance.
Resumo:
Written information is commonly used to inform patients about their disease and treatment, but must be evidence-based and understandable to be useful. This study assessed the quality of the content and the readability of information brochures for people affected by brain tumours. We randomly selected 18 publicly available brochures. Brochures were assessed by criteria to assess the quality of content using the DISCERN instrument. Readability was tested using three commonly used formulas, which yield the reading grade level required to comprehend the brochure (sixth grade level recommended). The mean overall DISCERN score was 3.17 out of a maximum of 5 (moderate quality); only one achieved a rating greater than 4 (high quality). Only one brochure met the sixth grade readability criteria. Although brochures may have accurate content, few satisfied all of the recommended criteria to evaluate their content. Existing brochures need to be critically reviewed and simplified, consumer-focused brochures produced.
Resumo:
The monitoring sites comprising a state of the environment (SOE) network must be carefully selected to ensure that they will be representative of the broader resource. Hierarchical cluster analysis (HCA) is a data-driven technique that can potentially be employed to assess the representativeness of a SOE monitoring network. The objective of this paper is to explore the use of HCA as an approach for assessing the representativeness of the New Zealand National Groundwater Monitoring Programme (NGMP), which is comprised of 110 monitoring sites across the country.
Resumo:
Rapid urbanisation and resulting continuous increase in traffic has been recognised as key factors in the contribution of increased pollutant loads to urban stormwater and in turn to receiving waters. Urbanisation primarily increases anthropogenic activities and the percentage of impervious surfaces in urban areas. These processes are collectively responsible for urban stormwater pollution. In this regard, urban traffic and land use related activities have been recognised as the primary pollutant sources. This is primarily due to the generation of a range of key pollutants such as solids, heavy metals and PAHs. Appropriate treatment system design is the most viable approach to mitigate stormwater pollution. However, limited understanding of the pollutant process and transport pathways constrains effective treatment design. This highlights necessity for the detailed understanding of traffic and other land use related pollutants processes and pathways in relation to urban stormwater pollution. This study has created new knowledge in relation to pollutant processes and transport pathways encompassing atmospheric pollutants, atmospheric deposition and build-up on ground surfaces of traffic generated key pollutants. The research study was primarily based on in-depth experimental investigations. This thesis describes the extensive knowledge created relating to the processes of atmospheric pollutant build-up, atmospheric deposition and road surface build-up and establishing their relationships as a chain of processes. The analysis of atmospheric deposition revealed that both traffic and land use related sources contribute total suspended particulate matter (TSP) to the atmosphere. Traffic sources become dominant during weekdays whereas land use related sources become dominant during weekends due to the reduction in traffic sources. The analysis further concluded that atmospheric TSP, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) concentrations are highly influenced by total average daily heavy duty traffic, traffic congestion and the fraction of commercial and industrial land uses. A set of mathematical equation were developed to predict TSP, PAHs and HMs concentrations in the atmosphere based on the influential traffic and land use related parameters. Dry deposition samples were collected for different antecedent dry days and wet deposition samples were collected immediately after rainfall events. The dry deposition was found to increase with the antecedent dry days and consisted of relatively coarser particles (greater than 1.4 ìm) when compared to wet deposition. The wet deposition showed a strong affinity to rainfall depth, but was not related to the antecedent dry period. It was also found that smaller size particles (less than 1.4 ìm) travel much longer distances from the source and deposit mainly with the wet deposition. Pollutants in wet deposition are less sensitive to the source characteristics compared to dry deposition. Atmospheric deposition of HMs is not directly influenced by land use but rather by proximity to high emission sources such as highways. Therefore, it is important to consider atmospheric deposition as a key pollutant source to urban stormwater in the vicinity of these types of sources. Build-up was analysed for five different particle size fractions, namely, <1 ìm, 1-75 ìm, 75-150 ìm, 150-300 ìm and >300 ìm for solids, PAHs and HMs. The outcomes of the study indicated that PAHs and HMs in the <75 ìm size fraction are generated mainly by traffic related activities whereas the > 150 ìm size fraction is generated by both traffic and land use related sources. Atmospheric deposition is an important source for HMs build-up on roads, whereas the contribution of PAHs from atmospheric sources is limited. A comprehensive approach was developed to predict traffic and other land use related pollutants in urban stormwater based on traffic and other land use characteristics. This approach primarily included the development of a set of mathematical equations to predict traffic generated pollutants by linking traffic and land use characteristics to stormwater quality through mathematical modelling. The outcomes of this research will contribute to the design of appropriate treatment systems to safeguard urban receiving water quality for future traffic growth scenarios. The „real world. application of knowledge generated was demonstrated through mathematical modelling of solids in urban stormwater, accounting for the variability in traffic and land use characteristics.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.
Resumo:
Background Expectations held by patients and health professionals may affect treatment choices and participation (by both patients and health professionals) in therapeutic interventions in contemporary patient-centered healthcare environments. If patients in rehabilitation settings overestimate their discharge health-related quality of life, they may become despondent as their progress falls short of their expectations. On the other hand, underestimating their discharge health-related quality of life may lead to a lack of motivation to participate in therapies if they do not perceive likely benefit. There is a scarcity of empirical evidence evaluating whether patients' expectations of future health states are accurate. The purpose of this study is to evaluate the accuracy with which older patients admitted for subacute in-hospital rehabilitation can anticipate their discharge health-related quality of life. Methods A prospective longitudinal cohort investigation of agreement between patients' anticipated discharge health-related quality of life (as reported on the EQ-5D instrument at admission to a rehabilitation unit) and their actual self-reported health-related quality of life at the time of discharge from this unit was undertaken. The mini-mental state examination was used as an indicator of patients' cognitive ability. Results Overall, 232(85%) patients had all assessment data completed and were included in analysis. Kappa scores ranged from 0.42-0.68 across the five EQ-5D domains and two patient cognition groups. The percentage of exact correct matches within each domain ranged from 69% to 85% across domains and cognition groups. Overall 40% of participants in each cognition group correctly anticipated all of their self-reported discharge EQ-5D domain responses. Conclusions Patients admitted for subacute in-hospital rehabilitation were able to anticipate the discharge health-related quality of life on the EQ-5D instrument with a moderate level of accuracy. This finding adds to the foundational empirical work supporting joint treatment decision making and patient-centered models of care during rehabilitation following acute illness or injury. Accurate patient expectations of the impact of treatment (or disease progression) on future health-related related quality of life is likely to allow patients and health professionals to successfully target interventions to priority areas where meaningful gains can be achieved.
Resumo:
For fuel management and/or ecological reasons prescribed burnings are conducted each year across Australia. Smoke from prescribed burnings could be the major source of air pollution in urban environment during the period of intensive prescribed burning. To investigate the impact of prescribed burning on air quality and the characteristics of prescribed burning particles, field measurements were conducted during the end period of a prescribed burning event in September 2011, Brisbane, Australia.
Resumo:
Quality based frame selection is a crucial task in video face recognition, to both improve the recognition rate and to reduce the computational cost. In this paper we present a framework that uses a variety of cues (face symmetry, sharpness, contrast, closeness of mouth, brightness and openness of the eye) to select the highest quality facial images available in a video sequence for recognition. Normalized feature scores are fused using a neural network and frames with high quality scores are used in a Local Gabor Binary Pattern Histogram Sequence based face recognition system. Experiments on the Honda/UCSD database shows that the proposed method selects the best quality face images in the video sequence, resulting in improved recognition performance.
Resumo:
Vehicle emissions are a significant source of fine particles (Dp < 2.5 µm) in an urban environment. These fine particles have been shown to have detrimental health effects, with children thought to be more susceptible. Vehicle emissions are mainly carbonaceous in nature, and carbonaceous aerosols can be defined as either elemental carbon (EC) or organic carbon (OC). EC is a soot-like material emitted from primary sources while OC fraction is a complex mixture of hundreds of organic compounds from either primary or secondary sources (Cao et al., 2006). Therefore the ratio of OC/EC can aid in the identification of source. The purpose of this paper is to use the concentration of OC and EC in fine particles to determine the levels of vehicle emissions in schools. It is expected that this will improve the understanding of the potential exposure of children in a school environment to vehicle emissions.