908 resultados para Precursor complexes
Resumo:
Interpolymer complexes (IPCs) formed between complimentary polymers in solution have shown a wide range of applications from drug delivery to biosensors. This work describes the combined use of isothermal titration calorimetry and surface plasmon resonance to investigate the thermodynamic and kinetic processes during hydrogen-bonded interpolymer complexation. Varied polymers that are commonly used in layer-by-layer coatings and pharmaceutical preparations were selected to span a range of chemical functionalities including some known IPCs previously characterized by other techniques, and other polymer combinations with unknown outcomes. This work is the first to comprehensively detail the thermodynamic and kinetic data of hydrogen bonded IPCs, aiding understanding and detailed characterization of the complexes. The applicability of the two techniques in determining thermodynamic, gravimetric and kinetic properties of IPCs is considered.
Resumo:
Nine of the compounds [M(L2−)(p-cymene)] (M = Ru, Os, L2− = 4,6-di-tert-butyl-N-aryl-o-amidophenolate) were prepared and structurally characterized (Ru complexes) as coordinatively unsaturated, formally 16 valence electron species. On L2−-ligand based oxidation to EPR-active iminosemiquinone radical complexes, the compounds seek to bind a donor atom (if available) from the N-aryl substituent, as structurally certified for thioether and selenoether functions, or from the donor solvent. Simulated cyclic voltammograms and spectroelectrochemistry at ambient and low temperatures in combination with DFT results confirm a square scheme behavior (ECEC mechanism) involving the Ln ligand as the main electron transfer site and the metal with fractional (δ) oxidation as the center for redox-activated coordination. Attempts to crystallize [Ru(Cym)(QSMe)](PF6) produced single crystals of [RuIII(QSMe •−)2](PF6) after apparent dissociation of the arene ligand.
Resumo:
Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.
Resumo:
Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.
Resumo:
ABSTRACT: Polypyridyl ruthenium complexes have been intensively studied and possess photophysical properties which are both interesting and useful. They can act as probes for DNA, with a substantial enhancement in emission when bound, and can induce DNA damage upon photoirradiation and therefore, the synthesis and characterization of DNA binding of new complexes is an area of intense research activity. Whilst knowledge of how the binding of derivatives compares to the parent compound is highly desirable, this information can be difficult to obtain. Here we report the synthesis of three new methylated complexes, [Ru(TAP)2(dppz-10-Me).2Cl, [Ru(TAP)2(dppz-10,12-Me2)].2Cl and [Ru(TAP)2(dppz-11-Me)].2Cl, and examine the consequences for DNA binding through the use of atomic resolution X-ray crystallography. We find that the methyl groups are located in discrete positions with a complete directional preference. This may help to explain the quenching behavior which is found in solution for analogous [Ru(phen)2(dppz)]2+ derivatives.
Resumo:
Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.
Resumo:
We report the first examples of hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands, and their applications as actinide(III) selective aqueous complexing agents. The combination of a hydrophobic diamide ligand in the organic phase and a hydrophilic tetrasulfonated bis-triazine ligand in the aqueous phase is able to separate Am(III) from Eu(III) by selective Am(III) complex formation across a range of nitric acid concentrations with very high selectivities, and without the use of buffers. In contrast, disulfonated bis-triazine ligands are unable to separate Am(III) from Eu(III) in this system. The greater ability of the tetrasulfonated ligands to retain Am(III) selectively in the aqueous phase than the corresponding disulfonated ligands appears to be due to the higher aqueous solubilities of the complexes of the tetrasulfonated ligands with Am(III). The selectivities for Am(III) complexation observed with hydrophilic tetrasulfonated bis-triazine ligands are in many cases far higher than those found with the polyaminocarboxylate ligands previously used as actinide-selective complexing agents, and are comparable to those found with the parent hydrophobic bis-triazine ligands. Thus we demonstrate a feasible alternative method to separate actinides from lanthanides than the widely studied approach of selective actinide extraction with hydrophobic bis-1,2,4-triazine ligands such as CyMe4-BTBP and CyMe4-BTPhen.
Resumo:
The intercalating [Ru(TAP)2(dppz)]2+ complex can photo-oxidise guanine in DNA, although in mixed-sequence DNA it can be difficult to understand the precise mechanism due to uncertainties in where and how the complex is bound. Replacement of guanine with the less oxidisable inosine (I) base can be used to understand the mechanism of electron transfer (ET). Here the ET has been compared for both L- and D-enantiomers of [Ru(TAP)2(dppz)]2+ in a set of sequences where guanines in the readily oxidisable GG step in {TCGGCGCCGA}2 have been replaced with I. The ET has been monitored using picosecond and nanosecond transient absorption and ps-time-resolved IR spectroscopy. In both cases inosine replacement leads to a diminished yield, but the trends are strikingly different for L- and D-complexes.
Resumo:
Background Children with callous-unemotional (CU) traits, a proposed precursor to adult psychopathy, are characterized by impaired emotion recognition, reduced responsiveness to others’ distress, and a lack of guilt or empathy. Reduced attention to faces, and more specifically to the eye region, has been proposed to underlie these difficulties, although this has never been tested longitudinally from infancy. Attention to faces occurs within the context of dyadic caregiver interactions, and early environment including parenting characteristics has been associated with CU traits. The present study tested whether infants’ preferential tracking of a face with direct gaze and levels of maternal sensitivity predict later CU traits. Methods Data were analyzed from a stratified random sample of 213 participants drawn from a population-based sample of 1233 first-time mothers. Infants’ preferential face tracking at 5 weeks and maternal sensitivity at 29 weeks were entered into a weighted linear regression as predictors of CU traits at 2.5 years. Results Controlling for a range of confounders (e.g., deprivation), lower preferential face tracking predicted higher CU traits (p = .001). Higher maternal sensitivity predicted lower CU traits in girls (p = .009), but not boys. No significant interaction between face tracking and maternal sensitivity was found. Conclusions This is the first study to show that attention to social features during infancy as well as early sensitive parenting predict the subsequent development of CU traits. Identifying such early atypicalities offers the potential for developing parent-mediated interventions in children at risk for developing CU traits.
Resumo:
This chapter presents selected literature examples to review the development of the use of donor–acceptor π–π stacking interactions as transient cross-links in supramolecular polymer networks. The chapter examines notable examples of these highly specific and directional interactions and illustrates how they can be utilised to reliably produce functional supramolecular, self-assembled systems. Knowledge gained from these fundamental studies has enabled the design, synthesis and application of donor–acceptor stacked supramolecular motifs in non-covalent polymer networks, which is exemplified through detailing the production, physical properties and optimisation of healable materials.
Resumo:
This work describes syntheses and electrochemical, spectroscopic, and bonding properties in a new series of dinuclear ruthenium(II) complexes bridged by polyaromatic (biphenyl, fluorene, phenanthrene, and pyrene) alkynyl ligands. Longitudinal expansion of the π-conjugated polyaromatic core of the bridging ligands caused a reduced potential difference between the anodic steps and reinforced their bridge-localized nature, as evidenced by UV/vis/near-IR and IR spectroelectrochemical data combined with DFT and TDDFT calculations. Importantly, the intricate multiple IR ν(CC) absorption bands for the singly oxidized states imply a thermal population of a range of conformers (rotamers) with distinct electronic character. This behavior was demonstrated with more accurate DFT calculations of selected nontruncated 1e− oxidized complexes in three different conformations. The combined experimental and theoretical data reveal that thermally populated rotamers featuring various mutual orientations of the ligated metal termini and the bridging diethynyl polyaromatic moieties have a significant impact on the electronic absorption and ν(CC) wavenumbers of the singly oxidized systems.
Resumo:
Since first reported in 2005, mononuclear ruthenium water oxidation catalysts have attracted a great deal of attention due to their catalytic performance and synthetic flexibility. In particular, ligands coordinated to a Ru metal centre play an important role in the catalytic mechanisms, exhibiting significant impact on catalyst efficiency, stability and activity towards water oxidation. This review focuses on finding possible correlations between the ligand effects and activity of mononuclear Ru aqua and non-aqua complexes as water oxidation catalysts. The ligand effects highlighted in the text include the electronic nature of core ligands and their substituents, the trans–cis effect, steric hindrance and the strain effect, the net charge effect, the geometric arrangement of the aqua ligand and the supramolecular effects, e.g., hydrogen bonding and influence of a pendant base. The outcome is not always obvious at the present knowledge level. Deeper understanding of the ligand effects, based on new input data, is mandatory for further progress towards a rational development of novel catalysts featuring enhanced activity in water oxidation.
Resumo:
A series of ruthenium(II) complexes [{RuCl(CO)(PMe3)3(–CHvCH–)}nX], 1a–1c (1a: n = 3, X = 3,3’’- dimethyl-2,2’:3’,2’’-terthiophene; 1b: n = 2, X = 2,2’-bithiophene; 1c: n = 2, X = 2,3-bis(3-methylthiophen- 2-yl)benzothiophene) and [{Cp*(dppe)2Ru(–CuC–)}3X], 1d (X = 3,3’’-dimethyl-2,2’:3’,2’’- terthiophene), were prepared and characterized by 1H, 13C and 31P NMR. Their redox, spectroscopic and bonding properties were studied with a range of spectro-electrochemical methods in combination with density functional theory calculations. The first two anodic steps observed for 1a and 1d are largely localized on the lateral frameworks of the molecular triangle, the direct conjugation between them being precluded due to the photostable open form of the dithienyl ethene moiety. The third anodic step is then mainly localized on the centerpiece of the triangular structure, affecting both bithiophene laterals. The experimental IR and UV-vis-NIR spectroelectrochemical data and, largely, also DFT calculations account for this explanation, being further supported by direct comparison with the anodic behavior of reference diruthenium complexes 1b and 1c.
Resumo:
Four new diruthenium complexes [{(η5-C5Me5)Ru(dppe)}2(μ-CuC–L–CuC)] featuring different bridging isomeric diethynyl benzodithiophenes viz. L = benzo[1,2-b;4,5-b’]dithiophene (complex 1), benzo[2,1-b;4,5b’]dithiophene (complex 2), benzo[1,2-b;3,4-b’]dithiophene (complex 3) and benzo[1,2-b;4,3-b’]-dithiophene (complex 4), were synthesized and characterized by molecular spectroscopic and crystallographicmethods. The subtle changes in the molecular structure introduced by the diethynyl benzodithiophene isomers have a notable impact on the stability of the oxidized complexes and their absorption characteristics in the visible-NIR and IR spectral domains. Electronic properties of stable oxidized complexes[1]n+ and [4]n+ (n = 1, 2) were investigated by cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry as well as DFT and TDDFT calculations. The results document the largely bridgelocalized character of the oxidation of parents 1 and 4. Cations [2]+ and [3]+ are too unstable at ambient temperature to afford their unambiguous characterization. UV-vis-NIR absorption spectral data combined with TDDFT calculations (BLYP35) reveal that the broad electronic absorption of [1]+ and [4]+ in the NIR region has a mixed intraligand π–π* and MLCT character, with similar contribution from their spin-delocalized trans and cis conformers. A spin-localized (mixed-valence) rotamer was only observed for [1]+ at ambient temperature as a minor component on the time scale of IR spectroscopy.