949 resultados para Plasma-membrane Transporter
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Methods of semen cryopreservation allow changes in spermatic cells, such as damage in plasma and acrossomal membrane and modifications in mitochondrial function due to a disorder in the lipidic bilayer. For effective oocyte fertilization, spermatozoa require functional competent membranes, and intact organelles, acrosome and DNA. However, most laboratory methods used to evaluate semen quality are not highly correlated with fertilizing capacity. The discovery of a variety of fluorochromes and compounds conjugated to fluorescent probes has enabled an accurate assessment of the viability, integrity and function of spermatozoa. Among the most used probes that label the various compartments of the sperm cell there are the membrane impermeable fluorescent dyes to test the membrane integrity, as well as acylated dyes that pass the intact membrane. For the acrossomal integrity the most commonly used method is lectins labeled by a fluorescent probe. The acrosome reaction and spermatic capacitation is detected by the evaluation of membrane architecture and disorder of lipids in plasma membrane. Mitochondrial function can be determined using markers for their aerobic activity. The DNA status of spermatozoa has been determined using the metachromatic properties of Acridine Orange, and the DNA fragmentation can also be assessed by TUNEL assay. Finally, DNA condensation is analyzed using a single cell DNA gel electrophoresis assay that indicates DNA compactation. This monograph aims to compile the various tests used to detect damaged spermatozoa under cryopreservation methods, searching for improve the predictive value of semen analysis with the intention of a successful conception
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Calcific aortic valve disease (CAVD) is a chronic disorder characterized by an abnormal mineralization of the leaflets, which is accelerated in bicuspid aortic valve (BAV). It is suspected that mechanical strain may promote/enhance mineralization of the aortic valve. However, the effect of mechanical strain and the involved pathways during mineralization of the aortic valve remains largely unknown. Valve interstitial cells (VICs) were isolated and studied under strain conditions. Human bicuspid aortic valves were examined as a model relevant to increase mechanical strain. Cyclic strain increased mineralization of VICs by several-fold. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analyses revealed that mechanical strain promoted the formation of mineralized spheroid microparticles, which coalesced into larger structure at the surface of apoptotic VICs. Apoptosis and mineralization were closely associated with expression of ENPP1. Inhibition of ENPP1 greatly reduced mineralization of VIC cultures. Through several lines of evidence we showed that mechanical strain promoted the export of ENPP1-containing vesicles to the plasma membrane through a RhoA/ROCK pathway. Studies conducted in human BAV revealed the presence of spheroid mineralized structures along with the expression of ENPP1 in areas of high mechanical strain. Mechanical strain promotes the production and accumulation of spheroid mineralized microparticles by VICs, which may represent one important underlying mechanism involved in aortic valve mineralization. RhoA/ROCK-mediated export of ENPP1 to the plasma membrane promotes strain-induced mineralization of VICs.
Características seminais e resfriamento de sêmen de tamanduá (Myrmecophaga tridactyla) de vida livre
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The routine semen evaluation assessing sperm concentration, motility and morphology, does not identify subtle defects in sperm chromatin architecture. Bulls appear to have stable chromatin, with low levels of DNA fragmentation. However, the nature of fragmentation and its impact on fertility remain unclear and there are no detailed reports characterizing the DNA organization and damage in this species. The intensive genetic selection, the use of artificial insemination and in vitro embryo production associated to the cryopreservation process can contribute to the chromatin damage and highlights the importance of sperm DNA integrity for the success of these technologies. Frozen-thawed semen samples from three ejaculates from a Nellore bull showed high levels of morphological sperm abnormalities (55.8±5.1%), and were selected for complementary tests. Damage of acrosomal (76.9±8.9%) and plasma membranes (75.7±9.3%) as well as sperm DNA strand breaks (13.8±9.5%) and protamination deficiency (3.7±0.6%) were significantly higher compared to the values measured in the semen of five Nellore bulls with normospermia (24.3±3.3%; 24.5±6.1%; 0.6±0.5%; 0.4±0.6% for acrosome, plasma membrane, DNA breaks and protamine deficiency, respectively) (P<0.05). Motility and percentage of spermatozoa with low mitochondrial potential showed no differences between groups. This study shows how routine semen analyses (in this case morphology) may point to the length and complexity of sperm cell damage emphasizing the importance of sperm function testing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
A myotoxic phospholipase A2, named bothropstoxin II (BthTX-II), was isolated from the venom of the South American snake Bothrops jararacussu and the pathogenesis of myonecrosis induced by this toxin was studied in mice. BthTX-II induced a rapid increase in plasma creatine kinase levels. Histological and ultrastructural observations demonstrate that this toxin affects muscle fibers by first disrupting the integrity of plasma membrane, as delta lesions were the earliest morphological alteration and since the plasma membrane was interrupted or absent in many portions. In agreement with this hypothesis, BthTX-II released peroxidase entrapped in negatively charged multilamellar liposomes and behaved as an amphiphilic protein in charge shift electrophoresis, an indication that its mechanism of action might be based on the interaction and disorganization of plasma membrane phospholipids. Membrane damage was followed by a complex series of morphological alterations in intracellular structures, most of which are probably related to an increase in cytosolic calcium levels. Myofilaments became hypercontracted into dense clumps which alternated with cellular spaces devoid of myofibrillar material. Later on, myofilaments changed to a hyaline appearance with a more uniform distribution. Mitochondria were drastically affected, showing high amplitude swelling, vesiculation of cristae, formation of flocculent densities, and membrane disruption. By 24 hr, abundant polymorphonuclear leucocytes and macrophages were observed in the interstitial space as well as inside necrotic fibers. Muscle regeneration proceeded normally, as abundant myotubes and regenerating myofibers were observed 7 days after BthTX-II injection. By 28 days regenerating fibers had a diameter similar to that of adult muscle fibers, although they presented two distinctive features: central location of nuclei and some fiber splitting. This good regenerative response may be explained by the observation that BthTX-II does not affect blood vessels, nerves, or basal laminae. © 1991.