860 resultados para Plant toxins - Physiological effect - Congresses
Resumo:
To study the role played by 5-HT mechanisms of the MRN, behavioural and physiological parameters were presently measured in rats having either electrolytic or 5,7-dihydroxytryptamine (5,7-DHT) lesion of the MRN made 7 days before testing. Half the animals were submitted to 2-h restraint 24 h before the test. In the elevated plus-maze, the electrolytic lesion increased the percentage of open-arm entries and of time spent on open arms - an anxiolytic effect - in both restrained and nonrestrained rats. The neurotoxic lesion had a similar effect, but only on restrained rats. Restraint had anxiogenic effect. The electrolytic lesion increased transitions between the light and dark compartments and the time spent in the bright compartment of the light-dark box in both restrained and nonrestrained rats. The neurotoxic lesion only increased bright time in restrained rats. The incidence, number and size of gastric ulcers were increased by either the electrolytic or the neurotoxic lesion in both restrained and nonrestrained animals. Both types of lesion depleted 5-HT in the hippocampus in restrained and nonrestrained rats. Restraint increased 5-HT levels. These results implicate 5-HT mechanisms of the median raphe nucleus in the regulation of anxiety and in the genesis of gastric stress ulcers. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
A field experiment was conducted from 1989-90 to 1991-92 to study the effect of potassium fertilization on guava (Psidium guajava L.). using 1-year-old plants of 'Rica', grown in a Kanhapludalf soil in the Jaboticabal region in Brazil. During the first year the K doses used were: 0, 24.9, 49.8, 99.6, 149.4 and 199.2 g K/plant, which were doubled during the second year and tripled during the third. In the third year the increase in g level showed positive response in yield. About 90% of the maximum yield observed was associated with 527 g K/plant and with a leaf content of 18.9 g K/kg.
Resumo:
The effect of the concentration of sucrose solutions on the cellular structure of potato tissue in equilibrium at 27 degreesC was Studied. Two different methods of investigation were used to determine the volume of the different phases composing the cellular tissue of the potato when in equilibrium with the solutions. one based on data of the concentration itself and the overall volume of 2 mm slices after 48 h at equilibrium, and the other on microscopic images of cells in thin slices of fresh tissue stained with neutral red after an hour in equilibrium to show protoplasts, vacuoles and plasmolysis spaces. The results of these methods were compared with those obtained by a predictive thermodynamic approach considering the semipermeability of cell membranes. Phase volume data obtained from microscopic analysis were more similar to what was predicted by the theoretical model than those obtained by means of composition measurement. where the long equilibrium time apparently led to the loss of semi permeability of the cell membranes, since total volumes calculated without consideration of the cell membranes were similar to those measured. This suggests that the length of time of osmotic dehydration brings about a change in cell structure and the consequent involvement of a different mechanism in mass transfer. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. 'Delta Opal') plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 mu mol L-1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.
Resumo:
Lady palm, [Rhapis excelsa (Thunberg) Henry ex. Rehder] is one of the most cultivated ornamental palms in the world, for use as a vase plant or in shaded landscapes. Because limited information exists on lady palm response to fertilizers, the objective of this study was to evaluate the effect of different types of fertilization and substrates on lady palm seedling growth and development. Three year old lady palms were planted in 8-L pots, filled with a mix of soil, manure, and sand 1:1:1 (v:v:v), placed under a 50% shade, and irrigated with microspray. Treatments were substrate fertilization with 500 g P(2)O(5) and 100 g K(2)O per m(3); fertilization with 1.8 kg of P(2)O(5) (simple superphosphate) per m3; 50 g of nitrogen (N), P(2)O(5), and K(2)O of a granulated fertilizer (10:10:10) per m(3), control (without fertilization), and a foliar fertilization in addition to these treatments using the commercial product Biofert (8:9:9). Treatments were replicated four times in a randomized block design. Each treatment plot consisted of four plants. Data were collected at 140, 170, 200, 230, 260, and 290 days after transplanting (DAT) for plant heights, stem diameter at substrate level, number of leaves, shoots, and canopy, roots fresh and dry matter samples were harvest at 290 days. Foliar fertilization resulted in significantly greater plant height in a 140, 120, 200, and 230 DAT and plant diameter on the 140, 260, and 290 DAT. There was interaction among factors for number of leaves with fertilization based on P(2)O(5) and K(2)O when leaf fertilizer was added that resulted in a greater number of leaves.
Resumo:
Previous studies have indicated the importance of angiotensin II (ANG II) in skeletal muscle angiogenesis. The present study explored the effect of regulation of the renin gene on angiogenesis induced by electrical stimulation with the use of physiological, pharmacological, and genetic manipulations of the renin-angiotensin system (RAS). Transfer of the entire chromosome 13, containing the physiologically regulated renin gene, from the normotensive inbred Brown Norway (BN) rat into the background of an inbred substrain of the Dahl salt-sensitive (SS/Mcwi) rat restored renin levels and the angiogenic response after electrical stimulation. This restored response was significantly attenuated when SS-13BN/Mcwi consomic rats were treated with lisinopril or high-salt diet. The role of ANG II on this effect was confirmed by the complete restoration of skeletal muscle angiogenesis in SS/Mcwi rats infused with subpressor doses of ANG II. Congenic strains derived from the SS-13BN/Mcwi consomic were used to further verify the role of the renin gene in this response. Microvessel density was markedly increased after stimulation in congenic strains that contained the renin gene from the BN rat (congenic lines A and D). This angiogenic response was suppressed in control strains that carried regions of the BN genome just above (congenic line C) or just below (congenic line B) the renin gene. The present study emphasizes the importance of maintaining normal renin regulation as well as ANG II levels during the angiogenesis process with a combination of physiological, genetic, and pharmacological manipulation of the RAS.
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Vegetated riparian buffer strips have been established in Southern Quebec (Canada) in order to intercept nutrients such as nitrate (NO(3)(-)) and protect water quality near agricultural fields. Buffer strips may also favour denitrification through a combination of high soil moisture, NO(3)(-) and carbon supply, which could lead to the production of nitrous oxide (N(2)O), a greenhouse gas. Denitrification could be further amplified by the presence of earthworms, or by plant species that promote earthworm and bacterial activity in soils. Soils from four farms, comprising maize fields and adjacent buffer strips, were sampled in the fall of 2008. A total of six earthworm species were found, but average earthworm biomass did not differ between buffer strips and maize agroecoecosystems. Nitrate concentrations and net nitrification rates were higher in the maize fields than in the buffer strips: there was no difference in N(2)O production in soils collected from the two sampling locations. Potential denitrification, measured by acetylene inhibition, varied by two orders of magnitude, depending on experimental conditions: when amended with H(2)O or with H(2)O + NO3-, potential denitrification was higher (P < 0.05) in soils from buffer strips than from maize fields. Potential denitrification was highest in soils amended with H(2)O+glucose, or with H(2)O+ NO(3)(-) + glucose. Using microcosms, we tested the effect of litter-soil mixtures on earthworm growth, and the effect of earthworm-litter-soil mixtures on potential denitrification. Based on four categories of chemical assays, litters of woody species (oak, apple, Rhododendron) were generally of lower nutritional quality than litter from agronomic species (alfalfa, switchgrass, corn stover). Alfalfa litter had the most positive effect, whereas apple litter had the most negative effect, on earthworm growth. Potential denitrification was 2-4 times higher in earthworm-litter-soil mixtures than in plain soil. Litter treatments that included corn stover had lower potential denitrification than those that included alfalfa or switchgrass, whereas litter treatments that included oak had lower potential denitrification than those that included apple or Rhododendron. Results suggest that potential N(2)O emissions may be higher in riparian buffer strips than in adjacent maize fields, that N(2)O emissions in buffer strips may be amplified by comminuting earthworms, and that plant litters that reduce earthworm growth may not be best at mitigating N(2)O emissions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Introduction. Pitaya (Hylocereus undatus) is an exotic fruit species little known in Brazil and which needs basic studies about plant nutrition, propagation and physiology. Emphasizing the co-existence of juvenile and adult stages in the pitaya canopy, the plant is generally propagated by cuttings. Materials and methods. A completely randomized design with four treatments and five replications was adopted. Each treatment was represented by the part of the canopy from which the cutting was taken ( upper, middle and lower cutting and cuttings from young plants). The following variables were registered: % cuttings with roots, % of live cuttings, root density, root diameter, root area, root length and root dry mass. Results were submitted to variance analyses, Tukey's test at 0.01 probability error and simple correlation analysis. Results and discussion. The results indicated that the position from which the cutting is taken had a quantitative effect on rooting formation of pitaya cuttings. Juvenile cuttings presented 35% more cuttings with roots than adult cuttings. Root density, root area, root length and root dry mass depended on juvenility, the highest results being registered for juvenile cuttings, independently of the variable. Conclusion. Juvenile and adult stages co-exist in the pitaya canopy. Juvenility is an important rooting factor for red pitaya cuttings.
Resumo:
The control of parasitic diseases in small ruminants is mainly done with the use of synthetic anthelmintics. However, incorrect and indiscriminate use of these products has caused the emergence of parasite resistance. Plants with anthelmintic activity are used in folk veterinary medicine, but it is necessary to investigate and scientifically validate low-cost phytotherapeutic alternatives for future use to control gastrointestinal nematodes in small ruminants by family farmers. Thus, the aim of this study was to evaluate the in vitro anthelmintic effect of plant extracts from Melia azedarach and Trichilia claussenii by the egg hatch test (EHT) and larval development test (LDT) against sheep gastrointestinal nematodes. The hexane extract of M. azedarach fruits was extracted through cold percolation and the methanol extract of T. claussenii leaves was obtained by extraction at room temperature in solvents in order of increasing polarity. The efficacy results were analyzed using the Probit program of SAS. The M. azedarach extract showed a LC50 of 572.2 mu g/mL and LC99 of 1137.8 mu g/mL in the EHT, and LC50 of 0.7 mu g/mL and LC99 of 60.81 mu g/mL in the LDT. In turn, the T. claussenii extract presented a LC50 of 263.8 mu g/mL and LC99 of 522.5 mu g/mL in the EHTand LC50 of 1.11 mu g/mL and LC99 of 26.4 mu g/mL in the LDT. Comparing the extracts of the species from the Meliaceae family, T. claussenii showed greater anti-parasite potential in vitro than M. azedarach. However, studies on the isolated compounds, toxicity and administration forms to animals are also needed to validate low-cost alternative herbal remedies for use to control gastrointestinal nematodes by family farmers. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The search for biological antitumor agents has been pursued for over half a century. Snake venom has been shown to possess a wide spectrum of biological activities. The objectives of the present review are to evaluate the existing controversies on this subject published in a number of papers and to propose probable explanations for the phenomena observed. We reported our results obtained in a study, in which we evaluated the action of the venoms of Crotalus durissus terrificus and Bothrops jararaca on Ehrlich ascites tumor cells. We noticed an important antitumor effect, mainly with Bothrops jararaca venom, as well as an increase in the functional activity of macrophages. We also observed an increase in the number of mononuclear and polymorphonuclear cells with Bothrops jararaca venom. Considering these findings, we postulate that both Borhrops jararaca and Crotalus durissus terrificus venoms can act directly on tumor cells. In addition, we propose an indirect mechanism, based on the stimulation of the inflammatory response, to inhibit tumor growth and to promote its rejection.
Resumo:
Bioactivity-guided fractionation of several bioactive extracts obtained from Cerrado and Atlantic Forest plant species led to the isolation of potent DNA-damaging piperidine 1-5 and guanidine alkaloids 6-9 from Cassia leptophylla and Pterogyne nitens respectively, two common Leguminosae from Atlantic Forest. By means of biotechnological approach on Maytenus aquifolium, a species from Cerrado, moderate DNA-damaging sesquiterpene pyridine alkaloid 10-11 was isolated. Bioassay-guided fractionation on Casearia sylvestris, a medicinal plant species found in Cerrado and Atlantic Forest, led to the isolation of clerodane diterpenes 12-13 which showed effect on DNA. In addition, we have reported several interesting potent antifungal iridoids: 1β-hydroxy-dihydrocornin (14), 1α-hydroxy-dihydrocornin (15), α-gardiol (16), β-gardiol (17), plumericin (18), isoplumericin (19), 11-O-trans-caffeoylteucrein (20); ester derivative: 2-methyl-4-hydroxy-butyl-caffeoate (21), amide N-[7-(3'.4'-methylenedioxyphenyl)-2Z, 4Z-heptadienoyl] pyrrolidine (22) and triterpene viburgenin (23).
Resumo:
Calcium chloride concentrations from 0.0 to 12.12 mM were added to the culture medium and calcium content in calluses were determined directly by X-ray fluorescence spectrometry, a non-destructive method, allowing the processing of the same tissue for histological analysis. A multivariate statistical analysis (PCA - Principal Components Analysis) grouped the treatments into 5 blocks and indicated the most responsive group. Lack of calcium supply caused a complete absence of a morphogenic process and tissue collapse. An increase in calcium concentration gave higher total protein and sugar contents, an increase in peroxidase specific activity and changes in the histological characteristics. It was possible to verify that calcium stimulated globular somatic embryo formation at concentration of 6.62 mM.