890 resultados para Phrynops geoffroanus - Genetic diversity
Resumo:
As a result of the global decline of fish stocks, an increasing number of fish species are becoming targets of heavy exploitation, often concomitantly with a lack of biological knowledge on their structure and demographics. Here we present 11 new polymorphic microsatellite loci, isolated from the slinger sea bream (Chrysoblephus puniceus, Sparidae), a relatively recent target of coastal fisheries in eastern South Africa. Levels of genetic diversity were assessed in 39 individuals collected from the KwaZulu-Natal coast (Park Rynie, South Africa). Observed and expected heterozygosities varied between 0.39 and 0.97 and between 0.53 and 0.96, respectively. One locus (SL35) showed significant heterozygote deficiency and linkage disequilibrium was detected between SL35 and SL1. Importantly, five of these microsatellites cross-amplify in Cheimerius nufar, a sympatric species also subjected to exploitation.
Resumo:
The continuing over-exploitation of traditional coastal stocks has resulted in the shift of commercial fishing towards deep-sea ecosystems in many parts of the world. The effects on target and non-target species have been dramatic; particularly for the deep-sea sharks. With the aim of providing tools that will allow the assessment of population genetic structure of Centroselachus crepidater, novel microsatellite loci have been developed for this deep-sea elasmobranch. Seven of these markers showed between 3 and 7 alleles per locus in two North Atlantic populations, with observed and expected heterozygosities between 0.18-0.95 and 0.25-0.82, respectively. Additionally, ten loci cross-amplify in other Elasmobranch species.
Resumo:
Over-exploitation of traditional coastal stocks and a rising demand for seafood have resulted in the shift of commercial fishing towards less-known, deep-sea species in many parts of the world. Yet, the lack of knowledge of the biology, ecology and life-history of these species represents a serious impediment for establishing sound stock management plans. With the aim of providing tools that will allow assessment of the population genetic structure of Macrourus berglax, we have isolated and characterised a suite of novel microsatellite loci for this deep sea grenadier. Eight of these markers showed between 4 and 11 alleles per locus in two distant North Atlantic populations, with observed and expected heterozygosities between 0.17-0.83 and 0.35-0.87, respectively. Importantly, eight of these loci also cross-amplify in other Macrourid species.
Resumo:
Apesar da fauna de mamíferos Neotropicais ser uma das mais ricas do mundo, o nosso conhecimento sobre os limites de espécies, distribuições geográficas e relações filogenéticas está ainda agora no seu início. As áreas de transição entre os dois maiores biomas da América do Sul, o Cerrado e a Amazónia, são ainda menos conhecidas. Até ao momento, escassos estudos focaram os pequenos mamíferos destas áreas. Destes estudos, apenas dois apresentam dados taxonómicos e de distribuição geográfica de uma lista de espécies reduzida e, nenhum é focado nos processos evolutivos que conduziram à diversidade destas áreas. O presente trabalho tem como objectivo aumentar o conhecimento básico sobre a diversidade do médio Rio Araguaia, na região central do Brasil, através da amostragem e análise de espécies de pequenos mamíferos, integrando um intenso trabalho de campo, de laboratório e de museu. Desta forma, um total de 22 espécies é registado para o médio Araguaia. De entre estas espécies, descreve-se uma espécie nova de Rhipidomys, regista-se uma espécie não descrita de Thrichomys e uma potencial nova forma de Oligoryzomys, e também se apresenta uma diagnose emendada do obscuro Oecomys cleberi. Para cada espécie, são também descritas as suas características morfológicas e resumem-se os seus aspectos de distribuição geográfica e história natural. Para os quatro géneros acima referidos, são apresentadas as análises filogenéticas que permitem a identificação das espécies. Adicionalmente, os princípios da filogeografia são aplicados para estudar os padrões da distribuição geográfica da diversidade genética de três roedores sigmodontíneos e seis marsupiais didelphídeos. Os resultados obtidos demonstram que o Rio Araguaia forma uma barreira geográfica para espécies especialistas em florestas não-alagáveis; por outro lado, espécies generalistas apresentam partilha de haplótipos em ambas as margens do rio. Argumentamos também que os refúgios florestais e os gradientes poderão ter tido um papel importante para moldar a estrutura genética de populações de pequenos mamíferos no Brasil central. Em suma, os resultados apresentados corroboram a proposição de que a diversidade Neotropical não poderá ser explicada através de um único modelo de especiação e que estes não são mutuamente exclusivos. O entendimento integral dos processos ecológicos e históricos que deram origem à fauna Neotropical, assim como a continuidade de estudos sistemáticos, depende da realização de novas amostragens e consequente enriquecimento dos museus com colecções apropriadas.
Resumo:
Tese de dout., Ciências do Mar, da Terra e do Ambiente (Ecologia Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012
Resumo:
The fire salamander complex is quite diverse in the Iberian Peninsula where nine subspecies of Salamandra salamandra are currently recognized. Here, we analysed the geographical distribution of the subspecies S. s. gallaica and S. s. crespoi using partial sequences of the mitochondrial cytochrome b gene of 168 individuals from 12 locations in Portugal. Our results support the existence of a deep lineage divergence between the two subspecies, with non-overlapping geographical distributions except in two contact zones: one in Sesimbra on the western coast, and another in Alcoutim on the southeastern border with Spain. Moreover, S. s. crespoi displays signs of gene flow among the sampled locations whereas S. s. gallaica shows evidence of some restriction to gene flow. Present-day genetic make-up of S. s. gallaica and S. s. crespoi is a result of past historical events, fine-tuned by contemporary Iberian geoclimate. Humid mountain areas were found to harbour increased genetic diversity possibly acting as past refugia during drier interglacial periods. To analyse wider geographical patterns and lineage splitting events within S. salamandra we performed a Bayesian dating analysis completing our data set with previously published sequences. The observed divergences were associated to successive biogeographic scenarios, and to other Iberian species showing similar trends.
Resumo:
First described more that 150 years ago, the systematics of the genera Geomalacus and Letourneuxia (Arionidae, Gastropoda, Pulmonata) is still challenging. The taxonomic classification of arionid species is based on extremely labile characters such as body size or color that depends both on diet and environment, as well as age. Moreover, there is little information on the genetic diversity and population structure of the Iberian slugs that could provide extra clues to disentangle their problematic classification. The present work uses different analytical tools such as habitat suitability (Ecological Niche Modeling - ENM), cytogenetic analysis and phylogeography to establish the geographical distribution and evolutionary history of these pulmonate slugs. The potential distribution of the four Geomalacus species was modeled using ENM, which allowed the identification of new locations for G. malagensis, including a first report in Portugal. Also, it was predicted a much wider distribution for G. malagensis and G. oliveirae than previously known. Classical cytogenetic analyses were assayed with reproductive and a novel use of somatic tissues (mouth and tentacles) returning the number of chromosomes for the four Geomalacus species and L. numidica (n = 31, 2n = 62) and the respective karyotypes. G. malagensis and L. numidica present similar chromosome morphologies and karyotypic formulae, being more similar to each other than the Geomalacus among themselves. We further reconstructed the phylogeny of the genera Geomalacus and Letourneuxia using partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) and the nuclear ribosomal small subunit (18S rRNA), and applied an independent evolutionary rate method, the indicator vectors correlation, to evaluate the existence of cryptic diversity within species. The five nominal species of Geomalacus and Letourneuxia comprise 14 well-supported cryptic lineages. Letourneuxia numidica was retrieved as a sister group of G. malagensis. G. oliveirae is paraphyletic with respect to G. anguiformis. According to our dating estimates, the most recent common ancestor of Geomalacus dates back to the Middle Miocene (end of the Serravallian stage). The major lineage splitting events within Geomalacus occurred during the dry periods of the Zanclean stage (5.3-3.6 million years) and some lineages were confined to more humid mountain areas of the Iberian Peninsula, which lead to a highly geographically structured mitochondrial genetic diversity. The major findings of this are the following: (1) provides updated species distribution maps for the Iberian Geomalacus expanding the known geographic distribution of the concerned species, (2) unravels the cryptic diversity within the genera Geomalacus and Letourneuxia, (3) Geomalacus oliveirae is paraphyletic with G. anguiformis and (4) Letourneuxia numidica is sister group of G. malagensis.
Resumo:
Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2014
Resumo:
Thesis (Master's)--University of Washington, 2015
Resumo:
Mother-to-child transmission of HIV is a unique setting that allows us to explore both the correlates of protective immunity and the characteristics of transmitted variants. This thesis first describes the levels and functional capacity of breast milk HIV-specific antibodies in 19 women with high plasma viral loads. Neutralizing antibodies (Nabs) were detected in breast milk supernatant (BMS) of 4 of 19 women examined, were of low potency and were not associated with infant infection. The low NAb activity in BMS was reflected in binding antibody levels with HIV envelope specific IgG titers being 2.2 log10 lower in BMS versus plasma. In contrast, non- neutralizing antibodies (nNAbs) capable of antibody dependent cell-mediated cytotoxicity (ADCC) were detected in the BMS from all 19 women. BMS ADCC activity was associated with envelope-specific IgG titers (p = 0.014) and was inversely associated with infant infection risk (p = 0.039). Our data indicate that BMS has limited HIV neutralizing activity, however, BMS ADCC activity is a correlate of transmission that may impact infant infection risk. In the second part of this thesis the neutralization sensitivity of 111 variants of diverse subtypes obtained from mothers and infants was determined against 7 HIVspecific broadly neutralizing monoclonal antibodies (mAbs) (NIH45-46w, VRC01, PGT128, PGT121, PG9 PGT145 and b12). Maternal and infant variants did not differ in their neutralization sensitivity to these mAbs and neither did variants from transmitting versus those from non-transmitting women. However, subtype A viruses were iii significantly more sensitive to neutralization by NIH45-46w and VRC01 (p= 0.0001 in both cases) and PGT145 (p=0.03) compared to non-subtype A viruses. Together, NIH45- 46w and PGT128 neutralization profiles resulted in 100% coverage of the variants tested. These data suggest that the epitopes targeted by these mAbs are present and accessible in both circulating and transmitted variants and that a combination of antibodies would provide maximum coverage against diverse subtypes commonly found in HIV endemic regions. Overall, this data suggest that an antibody based HIV vaccine capable of eliciting antibodies of multiple specificities that can mediate ADCC and/or neutralizing activity can provide protection and conquer the genetic diversity displayed by HIV.
Resumo:
Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.
Covariation between colony social structure and immune defences of workers in the ant Formica selysi
Resumo:
Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.
Resumo:
Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.
Resumo:
The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental-scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta-analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post-glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post-glacial) should be considered in conservation assessments for regional and national red lists.
Resumo:
Fire blight is an economically important disease of apples and pears that is caused by the
bacterium Erwinia amylovora. Control of the disease depends on limiting primaly blosson1
infection in the spring, and rapidly removing infected tissue. The possibility of using phages to
control E.amylovora populations has been suggested, but previous studies have. failed to show
high treatment efficacies. This work describes the development of a phage-based biopesticide
that controls E. amylovora populations under field conditions, and significantly reduces the
incidence of fire blight.
This work reports the first use ofPantoea agglomerans, a non-pathogenic relative ofE.
amylovora, as a carrier for E. amylovora.phages. Its role is to support a replicating population of
these phages on blossom surfaces during the period when the flowers are most susceptible to
infection. Seven phages and one carrier isolate were selected for field trials from existing
collections of 56 E. amylovora phages and 249 epiphytic orchard bacteria. Selection of the .
/'
phages and carrier was based on characteristics relevant to the production and field perfonnance
of a biopesticide: host range, genetic diversity, growth under the conditions of large-scale
production, and the ability to prevent E. amylovora from infecting pear blossoms. In planta
assays showed that both the phages and the carrier make significant contributions to reducirig the
development of fire blight symptoms in pear blossoms.
Field-scale phage production and purification methods were developed based on the
growth characteristics of the phages and bacteria in liquid culture, and on the survival of phages
in various liquid media.
Six of twelve phage-carrier biopesticide treatments caused statistically signiflcant reductions in disease incidence during orchard trials. Multiplex real-time PCR was used to
simultaneously monitor the phage, carrier, and pathogen populations over the course of selected
treatments. In all cases. the observed population dynamics of the biocontrol agents and the
pathogen were consistent with the success or failure of each treatment to control disease
incidence. In treatments exhibiting a significantly reduced incidel1ce of fire blight, the average
blossom population ofE.amylovora had been reduced to pre-experiment epiphytic levels. In
successful treatments the phages grew on the P. agglomerans carrier for 2 to 3 d after treatment
application. The phages then grew preferentially on the pathogen, once it was introduced into this
blossom ecosystem. The efficacy of the successful phage-based treatnlents was statistically
similar to that of streptomycin, which is the most effective bactericide currently available for fire
blight prevention.
The in planta behaviour ofE. amylovora was compared to that ofErwinia pyrifoliae, a
closely related species that causes fire blight-like synlptoms on pears in southeast Asia. Duplex
real-time PCR was used to monitor the population dynamics of both species on single blossonls.
E. amylovora exhibited a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.
The genome ofErwinia phage